首頁 >後端開發 >Golang >淺析golang怎麼實現延時任務

淺析golang怎麼實現延時任務

PHPz
PHPz轉載
2023-03-22 16:54:171982瀏覽

golang怎麼實現延時任務?以下這篇文章跟大家分享一套基於golang實作的縮時任務方案,希望對大家有幫助!

淺析golang怎麼實現延時任務

在實際業務場景中,我們有時會碰到一些延時的需求:例如,在電商平台,運作在管理後台添加商品後,不需要立刻展示在前台,而是在之後某個時間點才展現。

當然,我們有很多種思路,可以處理這個問題。例如,將待發佈商品資訊新增至db,然後透過定時任務輪詢資料表的方式,查詢目前時間點的發佈商品;又例如,將商品資訊全部新增到redis中,透過SortSet屬性完成這個功能。最終的選擇,取決於我們的業務場景和運行環境。

在這裡,我想跟大家分享一套,基於golang實作的延時任務方案。

你可以收穫

  • golang管道的靈活運用
  • golang timer的應用
  • golang切片元素插入排序的實作想法
  • golang延時任務的實作想法

正文

#思考導圖

為了讓大家有一個大致的印象,我將正文的大綱列在下面。

淺析golang怎麼實現延時任務

實作想法

#我們都知道,任何一種佇列,實際上都是存在生產者和消費者兩部分的。只不過,延時任務相對於一般佇列,多了一個延時的特性罷了。

1、生產者

從生產者的角度上講,當使用者推送一個任務過來的時候,會帶著延遲執行的時間數值。為了讓這個任務到預定時刻能執行,我們需要將這個任務放在記憶體中儲存一段時間,並且時間是一維的,並且不斷增長。那麼,我們用什麼資料結構來儲存呢?

(1)選擇一:map。由於map具有無序性,無法按照執行時間排序,我們無法保證取出的任務是否是當前時間點需要執行的,所以排除這個選項。

(2)選擇二:channel。的確,channel有時候可以看作佇列,然而,它的輸出和輸入嚴格遵循著「先進先出」的原則,遺憾的是,先進的任務未必就是先執行的,因此,channel也並不合適。

(3)選擇三:

slice。切片貌似可行,因為切片元素是有序性的,所以,如果我們能夠按照執行時間的順序排列好所有的切片元素,那麼,每次只要讀取切片的頭元素(也可能是尾元素),就可以得到我們要的任務。

2、消費者

從消費者的角度來說,它最大的困難在於,如何讓每個任務,在特定的時間點被消費。那麼,針對每一個任務,我們要如何實現,讓它等待一段時間後再執行呢?

沒錯,就是timer。

總結下來,「

切片 timer」的組合,應該是可以達到目的的。

步步為營

#1、資料流

(1)使用者呼叫

InitDelayQueue () ,初始化延時任務物件。

(2)開啟協程,監聽任務操作管道(add/delete訊號),以及執行時間管道(timer.C訊號)。

(3)用戶發出add/delete訊號。

(4)(2)中的協程捕捉(3)中的訊號,對任務清單進行變更。

(5)當任務執行的時間點到達的時候(timer.C管道有元素輸出的時候),執行任務。

淺析golang怎麼實現延時任務

2、資料結構

(1)延時任務物件

// 延时任务对象
type DelayQueue struct {
   tasks                 []*task             // 存储任务列表的切片
   add                   chan *task          // 用户添加任务的管道信号
   remove                chan string         // 用户删除任务的管道信号
   waitRemoveTaskMapping map[string]struct{} // 等待删除的任务id列表
}
這裡要注意,有一個

waitRemoveTaskMapping欄位。由於要刪除的任務,可能還在add管道中,沒有及時更新到tasks欄位中,所以,需要暫時記錄下客戶要刪除的任務id。

(2)任務物件

// 任务对象
type task struct {
   id       string    // 任务id
   execTime time.Time // 执行时间
   f        func()    // 执行函数
}

3、初始化延時任務物件
// 初始化延时任务对象
func InitDelayQueue() *DelayQueue {
   q := &DelayQueue{
      add:                   make(chan *task, 10000),
      remove:                make(chan string, 100),
      waitRemoveTaskMapping: make(map[string]struct{}),
   }

   return q
}

在這個過程中,我們需要對使用者對任務的操作訊號,以及任務的執行時間訊號進行監聽。

func (q *DelayQueue) start() {
   for {
      // to do something...

      select {
      case now := <-timer.C:
         // 任务执行时间信号
         // to do something...
      case t := <-q.add:
         // 任务推送信号
         // to do something...
      case id := <-q.remove:
         // 任务删除信号
         // to do something...
      }
   }
}

完善我們的初始化方法:

// 初始化延时任务对象
func InitDelayQueue() *DelayQueue {
   q := &DelayQueue{
      add:                   make(chan *task, 10000),
      remove:                make(chan string, 100),
      waitRemoveTaskMapping: make(map[string]struct{}),
   }

   // 开启协程,监听任务相关信号
   go q.start()
   return q
}

4、生產者推送任務

生產者推送任務的時候,只需要將任務加到add管道中即可,在這裡,我們產生一個任務id,並返回給用戶。

// 用户推送任务
func (q *DelayQueue) Push(timeInterval time.Duration, f func()) string {
   // 生成一个任务id,方便删除使用
   id := genTaskId()
   t := &task{
      id:       id,
      execTime: time.Now().Add(timeInterval),
      f:        f,
   }

   // 将任务推到add管道中
   q.add <- t
   return id
}

5、任务推送信号的处理

在这里,我们要将用户推送的任务放到延时任务的tasks字段中。由于,我们需要将任务按照执行时间顺序排序,所以,我们需要找到新增任务在切片中的插入位置。又因为,插入之前的任务列表已经是有序的,所以,我们可以采用二分法处理。

// 使用二分法判断新增任务的插入位置
func (q *DelayQueue) getTaskInsertIndex(t *task, leftIndex, rightIndex int) (index int) {
   if len(q.tasks) == 0 {
      return
   }

   length := rightIndex - leftIndex
   if q.tasks[leftIndex].execTime.Sub(t.execTime) >= 0 {
      // 如果当前切片中最小的元素都超过了插入的优先级,则插入位置应该是最左边
      return leftIndex
   }

   if q.tasks[rightIndex].execTime.Sub(t.execTime) <= 0 {
      // 如果当前切片中最大的元素都没超过插入的优先级,则插入位置应该是最右边
      return rightIndex + 1
   }

   if length == 1 && q.tasks[leftIndex].execTime.Before(t.execTime) && q.tasks[rightIndex].execTime.Sub(t.execTime) >= 0 {
      // 如果插入的优先级刚好在仅有的两个优先级之间,则中间的位置就是插入位置
      return leftIndex + 1
   }

   middleVal := q.tasks[leftIndex+length/2].execTime

   // 这里用二分法递归的方式,一直寻找正确的插入位置
   if t.execTime.Sub(middleVal) <= 0 {
      return q.getTaskInsertIndex(t, leftIndex, leftIndex+length/2)
   } else {
      return q.getTaskInsertIndex(t, leftIndex+length/2, rightIndex)
   }
}

找到正确的插入位置后,我们才能将任务准确插入:

// 将任务添加到任务切片列表中
func (q *DelayQueue) addTask(t *task) {
   // 寻找新增任务的插入位置
   insertIndex := q.getTaskInsertIndex(t, 0, len(q.tasks)-1)
   // 找到了插入位置,更新任务列表
   q.tasks = append(q.tasks, &task{})
   copy(q.tasks[insertIndex+1:], q.tasks[insertIndex:])
   q.tasks[insertIndex] = t
}

那么,在监听add管道的时候,我们直接调用上述addTask() 即可。

func (q *DelayQueue) start() {
   for {
      // to do something...

      select {
      case now := <-timer.C:
         // 任务执行时间信号
         // to do something...
      case t := <-q.add:
         // 任务推送信号
         q.addTask(t)
      case id := <-q.remove:
         // 任务删除信号
         // to do something...
      }
   }
}

6、生产者删除任务

// 用户删除任务
func (q *DelayQueue) Delete(id string) {
   q.remove <- id
}

7、任务删除信号的处理

在这里,我们可以遍历任务列表,根据删除任务的id找到其在切片中的对应index。

// 删除指定任务
func (q *DelayQueue) deleteTask(id string) {
   deleteIndex := -1
   for index, t := range q.tasks {
      if t.id == id {
         // 找到了在切片中需要删除的所以呢
         deleteIndex = index
         break
      }
   }

   if deleteIndex == -1 {
      // 如果没有找到删除的任务,说明任务还在add管道中,来不及更新到tasks中,这里我们就将这个删除id临时记录下来
      // 注意,这里暂时不考虑,任务id非法的特殊情况
      q.waitRemoveTaskMapping[id] = struct{}{}
      return
   }

   if len(q.tasks) == 1 {
      // 删除后,任务列表就没有任务了
      q.tasks = []*task{}
      return
   }

   if deleteIndex == len(q.tasks)-1 {
      // 如果删除的是,任务列表的最后一个元素,则执行下列代码
      q.tasks = q.tasks[:len(q.tasks)-1]
      return
   }

   // 如果删除的是,任务列表的其他元素,则需要将deleteIndex之后的元素,全部向前挪动一位
   copy(q.tasks[deleteIndex:len(q.tasks)-1], q.tasks[deleteIndex+1:len(q.tasks)-1])
   q.tasks = q.tasks[:len(q.tasks)-1]
   return
}

然后,我们可以完善start()方法了。

func (q *DelayQueue) start() {
   for {
      // to do something...

      select {
      case now := <-timer.C:
         // 任务执行时间信号
         // to do something...
      case t := <-q.add:
         // 任务推送信号
         q.addTask(t)
      case id := <-q.remove:
         // 任务删除信号
         q.deleteTask(id)
      }
   }
}

8、任务执行信号的处理

start()执行的时候,分成两种情况:任务列表为空,只需要监听add管道即可;任务列表不为空的时候,需要监听所有管道。任务执行信号,主要是依靠timer来实现,属于第二种情况。

func (q *DelayQueue) start() {
   for {
      if len(q.tasks) == 0 {
           // 任务列表为空的时候,只需要监听add管道
           select {
           case t := <-q.add:
              //添加任务
              q.addTask(t)
           }
        
           continue
      }

      // 任务列表不为空的时候,需要监听所有管道

      // 任务的等待时间=任务的执行时间-当前的时间
      currentTask := q.tasks[0]
      timer := time.NewTimer(currentTask.execTime.Sub(time.Now()))

      select {
      case now := <-timer.C:
         // 任务执行信号
         timer.Stop()
        if _, isRemove := q.waitRemoveTaskMapping[currentTask.id]; isRemove {
           // 之前客户已经发出过该任务的删除信号,因此需要结束任务,刷新任务列表
           q.endTask()
           delete(q.waitRemoveTaskMapping, currentTask.id)
           continue
        }
        
        // 开启协程,异步执行任务
        go q.execTask(currentTask, now)
        // 任务结束,刷新任务列表
        q.endTask()
      case t := <-q.add:
         // 任务推送信号
         timer.Stop()
         q.addTask(t)
      case id := <-q.remove:
         // 任务删除信号
         timer.Stop()
         q.deleteTask(id)
      }
   }
}

执行任务:

// 执行任务
func (q *DelayQueue) execTask(task *task, currentTime time.Time) {
   if task.execTime.After(currentTime) {
      // 如果当前任务的执行时间落后于当前时间,则不执行
      return
   }

   // 执行任务
   task.f()
   return
}

结束任务,刷新任务列表:

// 一个任务去执行了,刷新任务列表
func (q *DelayQueue) endTask() {
   if len(q.tasks) == 1 {
      q.tasks = []*task{}
      return
   }

   q.tasks = q.tasks[1:]
}

9、完整代码

delay_queue.go

package delay_queue

import (
   "go.mongodb.org/mongo-driver/bson/primitive"
   "time"
)

// 延时任务对象
type DelayQueue struct {
   tasks                 []*task             // 存储任务列表的切片
   add                   chan *task          // 用户添加任务的管道信号
   remove                chan string         // 用户删除任务的管道信号
   waitRemoveTaskMapping map[string]struct{} // 等待删除的任务id列表
}

// 任务对象
type task struct {
   id       string    // 任务id
   execTime time.Time // 执行时间
   f        func()    // 执行函数
}

// 初始化延时任务对象
func InitDelayQueue() *DelayQueue {
   q := &DelayQueue{
      add:                   make(chan *task, 10000),
      remove:                make(chan string, 100),
      waitRemoveTaskMapping: make(map[string]struct{}),
   }

   // 开启协程,监听任务相关信号
   go q.start()
   return q
}

// 用户删除任务
func (q *DelayQueue) Delete(id string) {
   q.remove <- id
}

// 用户推送任务
func (q *DelayQueue) Push(timeInterval time.Duration, f func()) string {
   // 生成一个任务id,方便删除使用
   id := genTaskId()
   t := &task{
      id:       id,
      execTime: time.Now().Add(timeInterval),
      f:        f,
   }

   // 将任务推到add管道中
   q.add <- t
   return id
}

// 监听各种任务相关信号
func (q *DelayQueue) start() {
   for {
      if len(q.tasks) == 0 {
         // 任务列表为空的时候,只需要监听add管道
         select {
         case t := <-q.add:
            //添加任务
            q.addTask(t)
         }

         continue
      }

      // 任务列表不为空的时候,需要监听所有管道

      // 任务的等待时间=任务的执行时间-当前的时间
      currentTask := q.tasks[0]
      timer := time.NewTimer(currentTask.execTime.Sub(time.Now()))

      select {
      case now := <-timer.C:
         timer.Stop()
         if _, isRemove := q.waitRemoveTaskMapping[currentTask.id]; isRemove {
            // 之前客户已经发出过该任务的删除信号,因此需要结束任务,刷新任务列表
            q.endTask()
            delete(q.waitRemoveTaskMapping, currentTask.id)
            continue
         }

         // 开启协程,异步执行任务
         go q.execTask(currentTask, now)
         // 任务结束,刷新任务列表
         q.endTask()
      case t := <-q.add:
         // 添加任务
         timer.Stop()
         q.addTask(t)
      case id := <-q.remove:
         // 删除任务
         timer.Stop()
         q.deleteTask(id)
      }
   }
}

// 执行任务
func (q *DelayQueue) execTask(task *task, currentTime time.Time) {
   if task.execTime.After(currentTime) {
      // 如果当前任务的执行时间落后于当前时间,则不执行
      return
   }

   // 执行任务
   task.f()
   return
}

// 一个任务去执行了,刷新任务列表
func (q *DelayQueue) endTask() {
   if len(q.tasks) == 1 {
      q.tasks = []*task{}
      return
   }

   q.tasks = q.tasks[1:]
}

// 将任务添加到任务切片列表中
func (q *DelayQueue) addTask(t *task) {
   // 寻找新增任务的插入位置
   insertIndex := q.getTaskInsertIndex(t, 0, len(q.tasks)-1)
   // 找到了插入位置,更新任务列表
   q.tasks = append(q.tasks, &task{})
   copy(q.tasks[insertIndex+1:], q.tasks[insertIndex:])
   q.tasks[insertIndex] = t
}

// 删除指定任务
func (q *DelayQueue) deleteTask(id string) {
   deleteIndex := -1
   for index, t := range q.tasks {
      if t.id == id {
         // 找到了在切片中需要删除的所以呢
         deleteIndex = index
         break
      }
   }

   if deleteIndex == -1 {
      // 如果没有找到删除的任务,说明任务还在add管道中,来不及更新到tasks中,这里我们就将这个删除id临时记录下来
      // 注意,这里暂时不考虑,任务id非法的特殊情况
      q.waitRemoveTaskMapping[id] = struct{}{}
      return
   }

   if len(q.tasks) == 1 {
      // 删除后,任务列表就没有任务了
      q.tasks = []*task{}
      return
   }

   if deleteIndex == len(q.tasks)-1 {
      // 如果删除的是,任务列表的最后一个元素,则执行下列代码
      q.tasks = q.tasks[:len(q.tasks)-1]
      return
   }

   // 如果删除的是,任务列表的其他元素,则需要将deleteIndex之后的元素,全部向前挪动一位
   copy(q.tasks[deleteIndex:len(q.tasks)-1], q.tasks[deleteIndex+1:len(q.tasks)-1])
   q.tasks = q.tasks[:len(q.tasks)-1]
   return
}

// 寻找任务的插入位置
func (q *DelayQueue) getTaskInsertIndex(t *task, leftIndex, rightIndex int) (index int) {
   // 使用二分法判断新增任务的插入位置
   if len(q.tasks) == 0 {
      return
   }

   length := rightIndex - leftIndex
   if q.tasks[leftIndex].execTime.Sub(t.execTime) >= 0 {
      // 如果当前切片中最小的元素都超过了插入的优先级,则插入位置应该是最左边
      return leftIndex
   }

   if q.tasks[rightIndex].execTime.Sub(t.execTime) <= 0 {
      // 如果当前切片中最大的元素都没超过插入的优先级,则插入位置应该是最右边
      return rightIndex + 1
   }

   if length == 1 && q.tasks[leftIndex].execTime.Before(t.execTime) && q.tasks[rightIndex].execTime.Sub(t.execTime) >= 0 {
      // 如果插入的优先级刚好在仅有的两个优先级之间,则中间的位置就是插入位置
      return leftIndex + 1
   }

   middleVal := q.tasks[leftIndex+length/2].execTime

   // 这里用二分法递归的方式,一直寻找正确的插入位置
   if t.execTime.Sub(middleVal) <= 0 {
      return q.getTaskInsertIndex(t, leftIndex, leftIndex+length/2)
   } else {
      return q.getTaskInsertIndex(t, leftIndex+length/2, rightIndex)
   }
}

func genTaskId() string {
   return primitive.NewObjectID().Hex()
}

测试代码:delay_queue_test.go

package delay_queue

import (
   "fmt"
   "testing"
   "time"
)

func TestDelayQueue(t *testing.T) {
   q := InitDelayQueue()
   for i := 0; i < 100; i++ {
      go func(i int) {
         id := q.Push(time.Duration(i)*time.Second, func() {
            fmt.Printf("%d秒后执行...\n", i)
            return
         })

         if i%7 == 0 {
            q.Delete(id)
         }
      }(i)
   }

   time.Sleep(time.Hour)
}

头脑风暴

上面的方案,的确实现了延时任务的效果,但是其中仍然有一些问题,仍然值得我们思考和优化。

1、按照上面的方案,如果大量延时任务的执行时间,集中在同一个时间点,会造成短时间内timer频繁地创建和销毁。

2、上述方案相比于time.AfterFunc()方法,我们需要在哪些场景下作出取舍。

3、如果服务崩溃或重启,如何去持久化队列中的任务。

小结

本文和大家讨论了延时任务在golang中的一种实现方案,在这个过程中,一次性定时器timer、切片、管道等golang特色,以及二分插入等常见算法都体现得淋漓尽致。

【相关推荐:Go视频教程编程教学

以上是淺析golang怎麼實現延時任務的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:juejin.cn。如有侵權,請聯絡admin@php.cn刪除