首頁  >  文章  >  web前端  >  怎麼利用Node進行圖片壓縮

怎麼利用Node進行圖片壓縮

青灯夜游
青灯夜游轉載
2023-03-20 18:22:482151瀏覽

怎麼利用Node進行圖片壓縮?以下這篇文章以PNG圖片為例跟大家介紹一下進行圖片壓縮的方法,希望對大家有幫助!

怎麼利用Node進行圖片壓縮

最近要搞圖片處理服務,其中一個就是要實作圖片壓縮功能。以前前端開發的時候只要利用canvas現成的API處理下就能實現,後端可能也有現成的API但我並不知道。仔細想想,我從來沒有詳細了解圖片壓縮原理,那剛好趁這次去研究學習下,所以有了這篇文章來記錄。老樣子,如有不對的地方,DDDD(帶弟弟)。

我們先把圖片上傳到後端,看看後端接收了什麼樣的參數。這裡後端我用的是Node.js(Nest),圖片我以PNG圖為例。

介面與參數列印如下:

@Post(&#39;/compression&#39;)<br/>@UseInterceptors(FileInterceptor(&#39;file&#39;))<br/>async imageCompression(@UploadedFile() file: Express.Multer.File) {<br/>  <br/>  return {<br/>    file<br/>  }<br/>}<br/>

要進行壓縮,我們就需要拿到影像資料。可以看到,唯一能藏匿圖像資料的就是這串buffer。那這串buffer描述了什麼,就需要先弄清楚什麼是PNG。 【相關教學推薦:nodejs影片教學程式設計教學

#PNG

##這裡是PNG的

WIKI地址。

閱讀之後,我了解到PNG是由一個8 byte的檔案頭加上多個的區塊(chunk)組成。示意圖如下:

其中:

檔案頭是由一個被稱為magic number的組成。值為 89 50 4e 47 0d 0a 1a 0a(16進位)。它標記了這串資料是PNG格式。

塊分為兩種,一種叫

關鍵塊(Critical chunks),一種叫輔助塊(Ancillary chunks)。關鍵塊是必不可少的,沒有關鍵塊,解碼器將無法正確識別並展示圖片。輔助塊是可選的,部分軟體在處理圖片之後就有可能攜帶輔助塊。每個區塊都是四個部分組成:4 byte 描述這個區塊的內容有多長,4 byte 描述這個區塊的類型是什麼,n byte 描述區塊的內容(n 就是前面4 byte 值的大小,也就是說,一個區塊最大長度為28*4),4 byte CRC校驗檢查區塊的數據,標記著一個區塊的結束。其中,區塊類型的4 byte 的值為4個acsii碼,第一個字母大寫表示是關鍵區塊小寫表示是輔助區塊;第二個字母大寫表示是公有小寫表示是私有;第三個字母必須是大寫,用於PNG後續的擴展;第四個字母表示該區塊不識別時,能否安全複製,大寫表示未修改關鍵區塊時才能安全複製,小寫表示都能安全複製。 PNG官方提供許多定義的區塊類型,這裡只需要知道關鍵區塊的類型即可,分別是IHDR,PLTE,IDAT,IEND。

IHDR

PNG要求

第一個區塊必須是IHDR。 IHDR的區塊內容是固定的13 byte,包含了圖片的以下資訊:

寬度width (4 byte) & 高度height (4 byte)

位元深bit depth (1 byte,值為1,2,4,8或16) & 顏色類型color type (1 byte,值為0,2,3,4或6)

壓縮方法compression method (1 byte,值為0 ) & 過濾方式filter method (1 byte,值為0)

交錯方式interlace method (1 byte,值為0或1)

寬度和高度很容易理解,剩下的幾個好像都很陌生,接下來我將進行說明。

在說明位深之前,我們先來看顏色類型,顏色類型有5種值:

  • 0 表示灰階(grayscale)它只有一個通道( channel),看成rgb的話,可以理解它的三色通道值是相等的,所以不需要多餘兩個通道表示。

  • 2 表示真實色彩(rgb)它有三個通道,分別是R(紅色),G(綠色),B(藍色)。

  • 3 表示顏色索引(indexed)它也只有一個通道,表示顏色的索引值。此類型往往配備一組顏色列表,具體的顏色是根據索引值和顏色列表查詢得到的。

  • 4 表示灰階和alpha 它有兩個通道,除了灰階的通道外,多了一個alpha通道,可以控制透明度。

  • 6 表示真實色彩和alpha 它有四個通道。

之所以要說到通道,是因為它和這裡的位深有關。位深的值就定義了每個通道所佔的位數(bit)。位元深跟顏色類型組合,就能知道圖片的顏色格式類型和每個像素所佔的記憶體大小。 PNG官方支援的組合如下表:

怎麼利用Node進行圖片壓縮

過濾和壓縮是因為PNG中儲存的不是圖像的原始數據,而是處理後的數據,這也是為什麼PNG圖片所佔記憶體較小的原因。 PNG使用了兩步驟進行了圖片資料的壓縮轉換。

第一步,過濾。過濾的目的是為了讓原始圖片資料經過此規則後,能進行更大的壓縮比。舉個例子,如果有一張漸變圖片,從左往右,顏色依次為[#000000, #000001, #000002, ..., #ffffff],那麼我們就可以約定一條規則,右邊的像素總是和它前一個左邊的像素進行比較,那麼處理完的資料就變成了[1, 1, 1, ..., 1],這樣是不是就能進行更好的壓縮。 PNG目前只有一種濾波方式,就是基於鄰近像素作為預測值,用目前像素減去預測值。過濾的類型一共有五種,(目前我還不知道這個類型值在哪裡存儲,有可能在IDAT裡,找到了再來刪除這條括號裡的已確定該類型值儲存在IDAT資料中)如下表所示:

0None不做任何處理#1Sub左側相鄰像素2Up#上方相鄰像素
Type byte #Filter name Predicted value
######### 3######Average######Math.floor((左側相鄰像素上方相鄰像素) / 2)############4##### #Paeth######取(左側相鄰像素上方相鄰像素- 左上方像素)最接近的值############

第二步,压缩。PNG也只有一种压缩算法,使用的是DEFLATE算法。这里不细说,具体看下面的章节。

交错方式,有两种值。0表示不处理,1表示使用Adam7 算法进行处理。我没有去详细了解该算法,简单来说,当值为0时,图片需要所有数据都加载完毕时,图片才会显示。而值为1时,Adam7会把图片划分多个区域,每个区域逐级加载,显示效果会有所优化,但通常会降低压缩效率。加载过程可以看下面这张gif图。

PLTE

PLTE的块内容为一组颜色列表,当颜色类型为颜色索引时需要配置。值得注意的是,颜色列表中的颜色一定是每个通道8bit,每个像素24bit的真实色彩列表。列表的长度,可以比位深约定的少,但不能多。比如位深是2,那么22,最多4种颜色,列表长度可以为3,但不能为5。

IDAT

IDAT的块内容是图片原始数据经过PNG压缩转换后的数据,它可能有多个重复的块,但必须是连续的,并且只有当上一个块填充满时,才会有下一个块。

IEND

IEND的块内容为0 byte,它表示图片的结束。

阅读到这里,我们把上面的接口改造一下,解析这串buffer。

@Post(&#39;/compression&#39;)<br/>@UseInterceptors(FileInterceptor(&#39;file&#39;))<br/>async imageCompression(@UploadedFile() file: Express.Multer.File) {<br/>  const buffer = file.buffer;<br/><br/>  const result = {<br/>    header: buffer.subarray(0, 8).toString(&#39;hex&#39;),<br/>    chunks: [],<br/>    size: file.size,<br/>  };<br/><br/>  let pointer = 8;<br/>  while (pointer < buffer.length) {<br/>    let chunk = {};<br/>    const length = parseInt(buffer.subarray(pointer, pointer + 4).toString(&#39;hex&#39;), 16);<br/>    const chunkType = buffer.subarray(pointer + 4, pointer + 8).toString(&#39;ascii&#39;);<br/>    const crc = buffer.subarray(pointer + length, pointer + length + 4).toString(&#39;hex&#39;);<br/>    chunk = {<br/>      ...chunk,<br/>      length,<br/>      chunkType,<br/>      crc,<br/>    };<br/><br/>    switch (chunkType) {<br/>      case &#39;IHDR&#39;:<br/>        const width = parseInt(buffer.subarray(pointer + 8, pointer + 12).toString(&#39;hex&#39;), 16);<br/>        const height = parseInt(buffer.subarray(pointer + 12, pointer + 16).toString(&#39;hex&#39;), 16);<br/>        const bitDepth = parseInt(<br/>          buffer.subarray(pointer + 16, pointer + 17).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const colorType = parseInt(<br/>          buffer.subarray(pointer + 17, pointer + 18).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const compressionMethod = parseInt(<br/>          buffer.subarray(pointer + 18, pointer + 19).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const filterMethod = parseInt(<br/>          buffer.subarray(pointer + 19, pointer + 20).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const interlaceMethod = parseInt(<br/>          buffer.subarray(pointer + 20, pointer + 21).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/><br/>        chunk = {<br/>          ...chunk,<br/>          width,<br/>          height,<br/>          bitDepth,<br/>          colorType,<br/>          compressionMethod,<br/>          filterMethod,<br/>          interlaceMethod,<br/>        };<br/>        break;<br/>      case &#39;PLTE&#39;:<br/>        const colorList = [];<br/>        const colorListStr = buffer.subarray(pointer + 8, pointer + 8 + length).toString(&#39;hex&#39;);<br/>        for (let i = 0; i < colorListStr.length; i += 6) {<br/>          colorList.push(colorListStr.slice(i, i + 6));<br/>        }<br/>        chunk = {<br/>          ...chunk,<br/>          colorList,<br/>        };<br/>        break;<br/>      default:<br/>        break;<br/>    }<br/>    result.chunks.push(chunk);<br/>    pointer = pointer + 4 + 4 + length + 4;<br/>  }<br/><br/>  return result;<br/>}<br/>

这里我测试用的图没有PLTE,刚好我去TinyPNG压缩我那张测试图之后进行上传,发现有PLTE块,可以看一下,结果如下图。

通过比对这两张图,压缩图片的方式我们也能窥探一二。

PNG的压缩

前面说过,PNG使用的是一种叫DEFLATE的无损压缩算法,它是Huffman Coding跟LZ77的结合。除了PNG,我们经常使用的压缩文件,.zip,.gzip也是使用的这种算法(7zip算法有更高的压缩比,也可以了解下)。要了解DEFLATE,我们首先要了解Huffman Coding和LZ77。

Huffman Coding

哈夫曼编码忘记在大学的哪门课接触过了,它是一种根据字符出现频率,用最少的字符替换出现频率最高的字符,最终降低平均字符长度的算法。

举个例子,有字符串"ABCBCABABADA",如果按照正常空间存储,所占内存大小为12 * 8bit = 96bit,现对它进行哈夫曼编码。

1.统计每个字符出现的频率,得到A 5次 B 4次 C 2次 D 1次

2.对字符按照频率从小到大排序,将得到一个队列D1,C2,B4,A5

3.按顺序构造哈夫曼树,先构造一个空节点,最小频率的字符分给该节点的左侧,倒数第二频率的字符分给右侧,然后将频率相加的值赋值给该节点。接着用赋值后节点的值和倒数第三频率的字符进行比较,较小的值总是分配在左侧,较大的值总是分配在右侧,依次类推,直到队列结束,最后把最大频率和前面的所有值相加赋值给根节点,得到一棵完整的哈夫曼树。

4.对每条路径进行赋值,左侧路径赋值为0,右侧路径赋值为1。从根节点到叶子节点,进行遍历,遍历的结果就是该字符编码后的二进制表示,得到:A(0)B(11)C(101)D(100)。

完整的哈夫曼树如下(忽略箭头,没找到连线- -!):

压缩后的字符串,所占内存大小为5 * 1bit + 4 * 2bit + 2 * 3bit + 1 * 3bit = 22bit。当然在实际传输过程中,还需要把编码表的信息(原始字符和出现频率)带上。因此最终占比大小为 4 * 8bit + 4 * 3bit(频率最大值为5,3bit可以表示)+ 22bit = 66bit(理想状态),小于原有的96bit。

LZ77

LZ77算法还是第一次知道,查了一下是一种基于字典和滑动窗的无所压缩算法。(题外话:因为Lempel和Ziv在1977年提出的算法,所以叫LZ77,哈哈哈?)

我们还是以上面这个字符串"ABCBCABABADA"为例,现假设有一个4 byte的动态窗口和一个2byte的预读缓冲区,然后对它进行LZ77算法压缩,过程顺序从上往下,示意图如下:

总结下来,就是预读缓冲区在动态窗口中找到最长相同项,然后用长度较短的标记来替代这个相同项,从而实现压缩。从上图也可以看出,压缩比跟动态窗口的大小,预读缓冲区的大小和被压缩数据的重复度有关。

DEFLATE

DEFLATE【RFC 1951】是先使用LZ77编码,对编码后的结果在进行哈夫曼编码。我们这里不去讨论具体的实现方法,直接使用其推荐库Zlib,刚好Node.js内置了对Zlib的支持。接下来我们继续改造上面那个接口,如下:

import * as zlib from &#39;zlib&#39;;<br/><br/>@Post(&#39;/compression&#39;)<br/>@UseInterceptors(FileInterceptor(&#39;file&#39;))<br/>async imageCompression(@UploadedFile() file: Express.Multer.File) {<br/>  const buffer = file.buffer;<br/><br/>  const result = {<br/>    header: buffer.subarray(0, 8).toString(&#39;hex&#39;),<br/>    chunks: [],<br/>    size: file.size,<br/>  };<br/><br/>  // 因为可能有多个IDAT的块 需要个数组缓存最后拼接起来<br/>  const fileChunkDatas = [];<br/>  let pointer = 8;<br/>  while (pointer < buffer.length) {<br/>    let chunk = {};<br/>    const length = parseInt(buffer.subarray(pointer, pointer + 4).toString(&#39;hex&#39;), 16);<br/>    const chunkType = buffer.subarray(pointer + 4, pointer + 8).toString(&#39;ascii&#39;);<br/>    const crc = buffer.subarray(pointer + length, pointer + length + 4).toString(&#39;hex&#39;);<br/>    chunk = {<br/>      ...chunk,<br/>      length,<br/>      chunkType,<br/>      crc,<br/>    };<br/><br/>    switch (chunkType) {<br/>      case &#39;IHDR&#39;:<br/>        const width = parseInt(buffer.subarray(pointer + 8, pointer + 12).toString(&#39;hex&#39;), 16);<br/>        const height = parseInt(buffer.subarray(pointer + 12, pointer + 16).toString(&#39;hex&#39;), 16);<br/>        const bitDepth = parseInt(<br/>          buffer.subarray(pointer + 16, pointer + 17).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const colorType = parseInt(<br/>          buffer.subarray(pointer + 17, pointer + 18).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const compressionMethod = parseInt(<br/>          buffer.subarray(pointer + 18, pointer + 19).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const filterMethod = parseInt(<br/>          buffer.subarray(pointer + 19, pointer + 20).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const interlaceMethod = parseInt(<br/>          buffer.subarray(pointer + 20, pointer + 21).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/><br/>        chunk = {<br/>          ...chunk,<br/>          width,<br/>          height,<br/>          bitDepth,<br/>          colorType,<br/>          compressionMethod,<br/>          filterMethod,<br/>          interlaceMethod,<br/>        };<br/>        break;<br/>      case &#39;PLTE&#39;:<br/>        const colorList = [];<br/>        const colorListStr = buffer.subarray(pointer + 8, pointer + 8 + length).toString(&#39;hex&#39;);<br/>        for (let i = 0; i < colorListStr.length; i += 6) {<br/>          colorList.push(colorListStr.slice(i, i + 6));<br/>        }<br/>        chunk = {<br/>          ...chunk,<br/>          colorList,<br/>        };<br/>        break;<br/>      case &#39;IDAT&#39;:<br/>        fileChunkDatas.push(buffer.subarray(pointer + 8, pointer + 8 + length));<br/>        break;<br/>      default:<br/>        break;<br/>    }<br/>    result.chunks.push(chunk);<br/>    pointer = pointer + 4 + 4 + length + 4;<br/>  }<br/><br/>  const originFileData = zlib.unzipSync(Buffer.concat(fileChunkDatas));<br/><br/>  // 这里原图片数据太长了 我就只打印了长度<br/>  return {<br/>    ...result,<br/>    originFileData: originFileData.length,<br/>  };<br/>}<br/>

最终打印的结果,我们需要注意红框的那几个部分。可以看到上图,位深和颜色类型决定了每个像素由4 byte组成,然后由于过滤方式的存在,会在每行的第一个字节进行标记。因此该图的原始数据所占大小为:707 * 475 * 4 byte + 475 * 1 byte = 1343775 byte。正好是我们打印的结果。

我们也可以试试之前TinyPNG压缩后的图,如下:

可以看到位深为8,索引颜色类型的图每像素占1 byte。计算得到:707 * 475 * 1 byte + 475 * 1 byte = 336300 byte。结果也正确。

总结

现在再看如何进行图片压缩,你可能很容易得到下面几个结论:

1.减少不必要的辅助块信息,因为辅助块对PNG图片而言并不是必须的。

2.减少IDAT的块数,因为每多一个IDAT的块,就多余了12 byte。

3.降低每个像素所占的内存大小,比如当前是4通道8位深的图片,可以统计整个图片色域,得到色阶表,设置索引颜色类型,降低通道从而降低每个像素的内存大小。

4.等等....

至于JPEG,WEBP等等格式图片,有机会再看。溜了溜了~(还是使用现成的库处理压缩吧)。

好久没写文章,写完才发现语雀不能免费共享,发在这里吧。

更多node相关知识,请访问:nodejs 教程

以上是怎麼利用Node進行圖片壓縮的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:juejin.cn。如有侵權,請聯絡admin@php.cn刪除