搜尋
首頁後端開發Golanggo pprof是什麼

go pprof是什麼

Jan 31, 2023 pm 07:00 PM
golanggo語言pprof

pprof是Go的效能分析工具,在程式運行過程中,可以記錄程式的運行信息,可以是CPU使用情況、記憶體使用情況、goroutine運行等,當需要效能調優或定位Bug時候,這些記錄的資訊是相當重要。使用pprof有多種方式,Go已經現成封裝好了1個“net/http/pprof”,使用簡單的幾行命令,就可以開啟pprof,記錄運行信息,並且提供了Web服務。

go pprof是什麼

本教學操作環境:windows7系統、GO 1.18版本、Dell G3電腦。

go pprof簡介

profile 一般稱為效能分析,字典上的翻譯是概況(名詞)或是描述…的概況(動詞)。對於計算機程式來說,它的 profile,就是一個程式在運行時的各種概況信息,包括 cpu 佔用情況,內存情況,線程情況,線程阻塞情況等等。知道了程式的這些訊息,也就能容易的定位程式中的問題和故障原因 。

pprof是Go的效能分析工具,在程式運行過程中,可以記錄程式的運行信息,可以是CPU使用情況、記憶體使用情況、goroutine運行等,當需要效能調優或定位Bug時候,這些記錄的資訊是相當重要。

golang 對於profiling 支援的比較好,標準函式庫提供了profile庫“runtime/pprof” 和“net/http/pprof”,而且也提供了很多好用的視覺化工具來輔助開發者做profiling。

對於線上服務,對於一個 HTTP Server,存取 pprof 提供的 HTTP 接口,取得效能資料。當然,實際上這裡底層也是呼叫的 runtime/pprof 提供的函數,封裝成介面對外提供網路訪問,本文主要介紹"net/http/pprof"的使用。

基本上使用

使用pprof有多種方式,Go已經現成封裝好了1個:net/http/pprof,使用簡單的幾行命令,就可以開啟pprof,記錄運行信息,並且提供了Web服務,能夠透過瀏覽器和命令列2種方式獲取運行數據。

web服務中如何開啟監控,來看一個簡單的範例。

package main

import (
"fmt"
 "net/http"
 _ "net/http/pprof"
)

func main() {
// 开启pprof,监听请求
 ip := "0.0.0.0:8080"
 if err := http.ListenAndServe(ip, nil); err != nil {
 	fmt.Printf("start pprof failed on %s\n", ip)
 }
 dosomething()
}

在程式中導入 "net/http/pprof"包,並打開監聽端口,這時候便可以獲取程式的profile,在實際生產中,我們一般將這個功能封裝成一個goroutine。那麼開啟之後該如何查看呢?有三種方式:

瀏覽器方式

#開啟一個瀏覽器輸入ip:port/debug/pprof,回車。

go pprof是什麼

pprof會提供很多效能資料。具體意義為:

  • allocs:記憶體分配情況的取樣資訊
  • blocks:阻塞操作情況的取樣資訊cmdline:程式啟動指令及其參數
  • goroutine :目前所有協程的堆疊資訊
  • heap:堆上記憶體的使用情況的取樣資訊mutex:鎖爭用情況的取樣資訊
  • profile:cpu佔用情況的取樣資訊
  • threadcreate:系統執行緒建立情況的取樣資訊
  • trace:程式執行的追蹤資訊

allocs是所有物件的記憶體分配,heap是活躍物件的記憶體分配,後文會有詳細的描述。

1、當 CPU 效能分析啟用後,Go runtime 會每 10ms 就暫停一下,記錄目前執行的 goroutine 的呼叫堆疊及相關資料。當效能分析資料儲存到硬碟後,我們就可以分析程式碼中的熱點了。
2、記憶體效能分析則是在堆(Heap)分配的時候,記錄一下呼叫堆疊。預設情況下,每 1000 次分配,取樣一次,這個數值可以改變。棧(Stack)分配 由於隨時會釋放,因此不會被記憶體分析所記錄。由於內存分析是取樣方式,並且也因為其記錄的是分配內存,而不是使用內存。因此使用記憶體效能分析工具來準確判斷程式具體的記憶體使用量是比較困難的。
3、阻塞分析是一個很獨特的分析,它有點類似 CPU 效能分析,但是它所記錄的是 goroutine 等待資源所花的時間。阻塞分析對分析程式並發瓶頸非常有幫助,阻塞效能分析可以顯示出何時出現了大批的 goroutine 被阻塞了。阻塞效能分析是特殊的分析工具,在排除 CPU 和記憶體瓶頸前,不應該用它來分析。

當然,如果你點進任何一個鏈接,便會發現,可讀性差,幾乎無法分析。如圖:

go pprof是什麼

點擊heap,拉到最底部,可以看到一些有趣的數據,有時候也有可能會對問題排查有幫助,但一般不用。

heap profile: 3190: 77516056 [54762: 612664248] @ heap/1048576
1: 29081600 [1: 29081600] @ 0x89368e 0x894cd9 0x8a5a9d 0x8a9b7c 0x8af578 0x8b4441 0x8b4c6d 0x8b8504 0x8b2bc3 0x45b1c1
#    0x89368d    github.com/syndtr/goleveldb/leveldb/memdb.(*DB).Put+0x59d
#    0x894cd8    xxxxx/storage/internal/memtable.(*MemTable).Set+0x88
#    0x8a5a9c    xxxxx/storage.(*snapshotter).AppendCommitLog+0x1cc
#    0x8a9b7b    xxxxx/storage.(*store).Update+0x26b
#    0x8af577    xxxxx/config.(*config).Update+0xa7
#    0x8b4440    xxxxx/naming.(*naming).update+0x120
#    0x8b4c6c    xxxxx/naming.(*naming).instanceTimeout+0x27c
#    0x8b8503    xxxxx/naming.(*naming).(xxxxx/naming.instanceTimeout)-fm+0x63

......

# runtime.MemStats
# Alloc = 2463648064
# TotalAlloc = 31707239480
# Sys = 4831318840
# Lookups = 2690464
# Mallocs = 274619648
# Frees = 262711312
# HeapAlloc = 2463648064
# HeapSys = 3877830656
# HeapIdle = 854990848
# HeapInuse = 3022839808
# HeapReleased = 0
# HeapObjects = 11908336
# Stack = 655949824 / 655949824
# MSpan = 63329432 / 72040448
# MCache = 38400 / 49152
# BuckHashSys = 1706593
# GCSys = 170819584
# OtherSys = 52922583
# NextGC = 3570699312
# PauseNs = [1052815 217503 208124 233034 ......]
# NumGC = 31
# DebugGC = false
  • Sys: 进程从系统获得的内存空间,虚拟地址空间
  • HeapAlloc:进程堆内存分配使用的空间,通常是用户new出来的堆对象,包含未被gc掉的。
  • HeapSys:进程从系统获得的堆内存,因为golang底层使用TCmalloc机制,会缓存一部分堆内存,虚拟地址空间
  • PauseNs:记录每次gc暂停的时间(纳秒),最多记录256个最新记录。
  • NumGC: 记录gc发生的次数

命令行方式

除了浏览器,Go还提供了命令行的方式,能够获取以上信息,这种方式用起来更方便。

使用命令go tool pprof url可以获取指定的profile文件,此命令会发起http请求,然后下载数据到本地,之后进入交互式模式,就像gdb一样,可以使用命令查看运行信息,以下为使用示例:

# 下载cpu profile,默认从当前开始收集30s的cpu使用情况,需要等待30s
go tool pprof http://localhost:8080/debug/pprof/profile # 30-second CPU profile
go tool pprof http://localhost:8080/debug/pprof/profile?seconds=120 # wait 120s

# 下载heap profile
go tool pprof http://localhost:8080/debug/pprof/heap # heap profile

# 下载goroutine profile
go tool pprof http://localhost:8080/debug/pprof/goroutine # goroutine profile

# 下载block profile
go tool pprof http://localhost:8080/debug/pprof/block # goroutine blocking profile

# 下载mutex profile
go tool pprof http://localhost:8080/debug/pprof/mutex

接下来用一个例子来说明最常用的四个命令:web、top、list、traces

接下来以内存分析举例,cpu和goroutine等分析同理,读者可以自行举一反三。

首先,我们通过命令go tool pprof url获取指定的profile/heap文件,随后自动进入命令行。如图:

2-go pprof是什麼

第一步,我们首先输入web命令,这时浏览器会弹出各个函数之间的调用图,以及内存的之间的关系。如图:

go pprof是什麼

这个图的具体读法,可参照:中文文档 或者英文文档 这里不多赘述。只需要了解越红越大的方块,有问题的可能性就越大,代表可能占用了更多的内存,如果在cpu的图中代表消耗了更多cpu资源,以此类推。
接下来 top、list、traces三步走可以看出很多想要的结果。

top 按指标大小列出前10个函数,比如内存是按内存占用多少,CPU是按执行时间多少。
top会列出5个统计数据:

  • flat: 本函数占用的内存量。
  • flat%: 本函数内存占使用中内存总量的百分比。
  • sum%: 之前函数flat的累计和。
  • cum:是累计量,假如main函数调用了函数f,函数f占用的内存量,也会记进来。
  • cum%: 是累计量占总量的百分比。

go pprof是什麼

这样我们可以看到到底是具体哪些函数占用了多少内存。

当然top后也可以接参数,top n可以列出前n个函数。

list可以查看某个函数的代码,以及该函数每行代码的指标信息,如果函数名不明确,会进行模糊匹配,比如list main会列出main.mainruntime.main。现在list sendToASR试一下。

go pprof是什麼

可以看到切片中增加元素时,占用了很多内存,左右2个数据分别是flatcum

traces 打印所有调用栈,以及调用栈的指标信息。使用方式为traces+函数名(模糊匹配)。

go pprof是什麼

在命令行之中,还有一个重要的参数 -base,假设我们已经通过命令行得到profile1与profile2,使用go tool pprof -base profile1 profile2,便可以以profile1为基础,得出profile2在profile1之上出现了哪些变化。通过两个时间切片的比较,我们可以清晰的了解到,两个时间节点之中发生的变化,方便我们定位问题(很重要!!!!)

可视化界面

打开可视化界面的方式为:go tool pprof -http=:1234 http://localhost:8080/debug/pprof/heap 其中1234是我们指定的端口

go pprof是什麼

Top

go pprof是什麼

该视图与前面所讲解的 top 子命令的作用和含义是一样的,因此不再赘述。

Graph

为函数调用图,不在赘述.

Peek

go pprof是什麼

此視圖相較於Top 視圖,增加了所屬的上下文資訊的展示,也就是函數的輸出呼叫者/被呼叫者。

Source

go pprof是什麼

這個視圖主要是增加了面向原始程式碼的追蹤和分析,可以看到其開銷主要消耗在哪裡。

Flame Graph

1go pprof是什麼

#對應資源消耗的火焰圖,火焰圖的讀法,這裡不贅述,不是本文的重點。

第二個下拉式選單如圖所示:

1go pprof是什麼

alloc_objects,alloc_space表示應用程式指派過的資源,不管有沒有釋放,inuse_objects,inuse_space表示應用程式的尚未釋放的資源常配情況。

Name Meaning
#inuse_space amount of memory allocated and not released yet
inuse_objects amount of objects allocated and not released yet
alloc_space #total amount of memory allocated (regardless of released)
alloc_objects total amount of objects allocated (regardless of released)
###

第一个下拉菜单可以与第二个下拉菜单相组合,可以查看临时变量的火焰图,常驻变量的内存调用图等。

tips

  • 程序运行占用较大的内存,可以通过 inuse_space 来体现.
  • 存在非常频繁的 GC 活动,通常意味着 alloc_space非常高,而程序运行过程中并没有消耗太多的内存(体现为 inuse_space 并不高),当然也可能出现 GC 来不及回收,因此c出现inuse_space 也变高的情况。这种情况下同样会大量消耗CPU。
  • 内存泄漏,通常 alloc_space 较高,且
    inuse_space 也较高。

操作方法

上面我们已经看完了go pprof 的所有操作,接下来讲解一下go tool pprof 的具体使用流程。

  • 通过监控平台监测到内存或cpu问题。
  • 通过浏览器方式大致判断是哪些可能的问题。
  • 通过命令行方式抓取几个时间点的profile
  • 使用web命令查看函数调用图
  • 使用top 、traces、list 命令定位问题
  • 如果出现了goroutine泄漏或者内存泄漏等随着时间持续增长的问题,go tool pprof -base比较两个不同时间点的状态更方便我们定位问题。

具体案例

案例一:goroutine泄漏

启动程序后,用浏览器方式打开profile:

1go pprof是什麼

发现内存持续上升,同时goroutine也在持续上升,初步判断,内存泄漏是由于goroutine泄漏导致的。

接下来通过命令行方式抓取goroutine的情况:命令行输入:go tool pprof localhost:8080/debug/pprof/goroutine,获取结果。

分析的流程

一、使用web命令查看调用图,大概了解目前的goroutine的泄露情况:

1go pprof是什麼

通过观察,最引入注目的便是runtime.gopark这个函数,这个函数在所有goroutine泄漏时都会出现,并且是大头,接下来我们研究一下这个函数的作用:

func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) {
 mp := acquirem()
 gp := mp.curg
 status := readgstatus(gp)
 mp.waitlock = lock
 mp.waitunlockf = unlockf
 gp.waitreason = reason
 mp.waittraceev = traceEv
 mp.waittraceskip = traceskip
 releasem(mp)
 
 mcall(park_m)
}

该函数的作用为:

1、调用acquirem函数:获取当前goroutine所绑定的m,设置各类所需参数。调用 releasem 函数将当前 goroutine 和其 m 的绑定关系解除。

2、调用 park_m 函数:将当前 goroutine 的状态从 _Grunning 切换为 _Gwaiting,也就是等待状态。删除 m 和当前 goroutine m→curg(简称gp)之间的关联。

3、调用 mcall 函数,仅会在需要进行 goroutiine 切换时会被调用:切换当前线程的堆栈,从 g 的堆栈切换到 g0 的堆栈并调用 fn(g) 函数。将 g 的当前 PC/SP 保存在 g->sched 中,以便后续调用 goready 函数时可以恢复运行现场。

综上:该函数的关键作用就是将当前的 goroutine 放入等待状态,这意味着 goroutine 被暂时被搁置了,也就是被运行时调度器暂停了。
所以出现goroutine泄漏一定会调用这个函数,这个函数不是goroutine泄漏的原因,而是goroutine泄漏的结果。

此外,我们发现有两个函数的goroutine的达到了67,很可疑,在我们接下来的验证中要格外留意。

二、使用top命令,获取更加具体的函数信息:

1go pprof是什麼

与上面分析的结论相似,我们要将关注点放在三个开启了67个goroutine的函数。

三、traces+函数名,查看调用栈,这一步在函数调用很复杂,无法从调用图里面清晰的看出时使用,帮助我们更清晰的了解函数的调用堆栈:

1go pprof是什麼

四、使用list+函数名,查看具体代码的问题。

1go pprof是什麼

1go pprof是什麼

通过list命令我们可以清楚的看出问题代码是堵塞在哪里。接下来的篇幅我们来分析一下这个问题:

goroutine泄漏知识

什么是goroutine泄漏:如果你启动了一个 goroutine,但并没有符合预期的退出,直到程序结束,此goroutine才退出,这种情况就是 goroutine 泄露。当 goroutine 泄露发生时,该 goroutine 的栈(一般 2k 内存空间起)一直被占用不能释放,goroutine 里的函数在堆上申请的空间也不能被 垃圾回收器 回收。这样,在程序运行期间,内存占用持续升高,可用内存越来也少,最终将导致系统崩溃。
什么时候出现goroutine泄漏:goroutine泄露一般是因为channel操作阻塞而导致整个routine一直阻塞等待或者 goroutine 里有死循环。
具体细分一下:

  • 从 channel 里读,但是没有写。
  • 向 unbuffered channel 写,但是没有读。
  • 向已满的 buffered channel 写,但是没有读。
  • select操作在所有case上阻塞。
  • goroutine进入死循环中,导致资源一直无法释放。

select底层也是channel实现的,如果所有case上的操作阻塞,select内部的channel便会阻塞,goroutine也无法继续执行。所以我们使用channel时一定要格外小心。

通过分析上面两幅图的情况,可以判断是因为select在所有case上死锁了,再深入代码分析,是因为项目中的的语音模型并发能力弱,在语音发包速度快起来的时候无法处理,导致select不满足条件,导致goroutine泄漏,应该在for循环之外加一个asr←nil,保证func2的select一定会满足,同时提高模型的并发能力,使得func1的不会阻塞。
防止goroutine泄漏的建议:

  • 创建goroutine时就要想好该goroutine该如何结束。
  • 使用channel时,要考虑到 channel阻塞时协程可能的行为,是否会创建大量的goroutine。
  • goroutine中不可以存在死循环。

案例二:内存泄漏

我们通过grafana发现内存出现泄漏:

go pprof是什麼

这一次我们不使用命令行,而是使用图形化界面来定位问题。
输入 go tool pprof -http=:1234 localhost:8080/debug/pprof/heap:

2go pprof是什麼

发现内存占用很有可能是byte.makeSlice()导致的,火焰图看的更加清晰:

2go pprof是什麼

而调用byte.makeSlice()的函数为标准库中的ioutil.ReadAll(),接下来我们只需要研究这个标准库函数的实现即可。

func readAll(r io.Reader, capacity int64) (b []byte, err error) {
	buf := bytes.NewBuffer(make([]byte, 0, capacity))
	defer func() {
		e := recover()
		if e == nil {
			return
		}
		if panicErr, ok := e.(error); ok && panicErr == bytes.ErrTooLarge {
			err = panicErr
		} else {
			panic(e)
		}
	}()
	_, err = buf.ReadFrom(r)
	return buf.Bytes(), err
}

// bytes.MinRead = 512
func ReadAll(r io.Reader) ([]byte, error) {
	return readAll(r, bytes.MinRead)
}

可以看到 ioutil.ReadAll 每次都会分配初始化一个大小为 bytes.MinRead 的 buffer ,bytes.MinRead 在 Golang 里是一个常量,值为 512 。就是说每次调用 ioutil.ReadAll 都先会分配一块大小为 512 字节的内存。
接下来看一下ReadFrom函数的实现:

func (b *Buffer) ReadFrom(r io.Reader) (n int64, err error) {
	b.lastRead = opInvalid
	// If buffer is empty, reset to recover space.
	if b.off >= len(b.buf) {
		b.Truncate(0)
	}
	for {
		if free := cap(b.buf) - len(b.buf); free < MinRead {
			// not enough space at end
			newBuf := b.buf
			if b.off+free < MinRead {
				// not enough space using beginning of buffer;
				// double buffer capacity
				newBuf = makeSlice(2*cap(b.buf) + MinRead)
			}
			copy(newBuf, b.buf[b.off:])
			b.buf = newBuf[:len(b.buf)-b.off]
			b.off = 0
		}
		m, e := r.Read(b.buf[len(b.buf):cap(b.buf)])
		b.buf = b.buf[0 : len(b.buf)+m]
		n += int64(m)
		if e == io.EOF {
			break
		}
		if e != nil {
			return n, e
		}
	}
	return n, nil // err is EOF, so return nil explicitly
}

ReadFrom函数主要作用就是从 io.Reader 里读取的数据放入 buffer 中,如果 buffer 空间不够,就按照每次 2x + MinRead 的算法递增,这里 MinRead 的大小也是 512 Bytes 。
项目读取的音频文件一般很大,buffer不够用,会一直调用makeSlice扩容,消耗大量内存,但是仅仅这样,只是程序执行时消耗了比较多的内存,并未有内存泄露的情况,那服务器又是如何内存不足的呢?这就不得不扯到 Golang 的 GC 机制。

GC算法的触发时机

golang的GC算法为三色算法,按理说会回收临时变量,但是触发GC的时机导致了这个问题:

  • 已分配的 Heap 到达某个阈值,会触发 GC, 该阈值由上一次 GC 时的 HeapAlloc 和 GCPercent 共同决定
  • 每 2 分钟会触发一次强制的 GC,将未 mark 的对象释放,但并不还给 OS
  • 每 5 分钟会扫描一个 Heap, 对于一直没有被访问的 Heap,归还给 OS

ioutil.ReadAll会将全部的数据加载到内存,一个大请求会多次调用makeSlice 分配很多内存空间,并发的时候,会在很短时间内占用大量的系统内存,然后将 GC 阈值增加到一个很高的值,这个时候要 GC 就只有等 2 分钟一次的强制 GC。这样内存中的数据无法及时GC,同时阈值还在不停的升高,导致GC的效率越来越低,最终导致缓慢的内存泄漏。

解决方法

//req.AduioPack,err=ioutil.ReadAll(c.Resquest.Body)

buffer:=bytes.NewBuffer(make[]byte,0,6400)
_,err:=io.Copy(buffer,c.Resquest.Body)
temp:=buffer.Bytes()
req.AduioPack=temp

不是一次性把文件读入内存,而是申请固定的内存大小。

【相關推薦:Go影片教學程式設計教學

以上是go pprof是什麼的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:csdn。如有侵權,請聯絡admin@php.cn刪除
使用GO開發時的安全考慮使用GO開發時的安全考慮Apr 27, 2025 am 12:18 AM

Gooffersrobustfeaturesforsecurecoding,butdevelopersmustimplementsecuritybestpracticeseffectively.1)UseGo'scryptopackageforsecuredatahandling.2)Manageconcurrencywithsynchronizationprimitivestopreventraceconditions.3)SanitizeexternalinputstoavoidSQLinj

了解GO的錯誤接口了解GO的錯誤接口Apr 27, 2025 am 12:16 AM

Go的錯誤接口定義為typeerrorinterface{Error()string},允許任何實現Error()方法的類型被視為錯誤。使用步驟如下:1.基本檢查和記錄錯誤,例如iferr!=nil{log.Printf("Anerroroccurred:%v",err)return}。 2.創建自定義錯誤類型以提供更多信息,如typeMyErrorstruct{MsgstringDetailstring}。 3.使用錯誤包裝(自Go1.13起)來添加上下文而不丟失原始錯誤信息,

並發程序中的錯誤處理並發程序中的錯誤處理Apr 27, 2025 am 12:13 AM

對效率的Handleerrorsinconcurrentgopragrs,UsechannelstocommunicateErrors,enplionErrorWatchers,Instertimeout,UsebufferedChannels和Provideclearrormessages.1)USEchannelelStopassErtopassErrorsErtopassErrorsErrorsErrorsFromGoroutInestOthemainFunction.2)

您如何在GO中實現接口?您如何在GO中實現接口?Apr 27, 2025 am 12:09 AM

在Go語言中,接口的實現是通過隱式的方式進行的。 1)隱式實現:類型只要包含接口定義的所有方法,就自動滿足該接口。 2)空接口:interface{}類型所有類型都實現,適度使用可避免類型安全問題。 3)接口隔離:設計小而專注的接口,提高代碼的可維護性和重用性。 4)測試:接口有助於通過模擬依賴進行單元測試。 5)錯誤處理:通過接口可以統一處理錯誤。

將GO接口與其他語言的接口進行比較(例如Java,C#)將GO接口與其他語言的接口進行比較(例如Java,C#)Apr 27, 2025 am 12:06 AM

go'sinterfacesareimpliclyimplyed,與Javaandc#wheRequireexplitiCimplation.1)Ingo,AnyTypeWithTheRequiredMethodSautSautSautautapitymethodimimplementsaninternionsaninterninternionsaninterface.2)

初始功能和副作用:平衡初始化與可維護性初始功能和副作用:平衡初始化與可維護性Apr 26, 2025 am 12:23 AM

Toensureinitfunctionsareeffectiveandmaintainable:1)Minimizesideeffectsbyreturningvaluesinsteadofmodifyingglobalstate,2)Ensureidempotencytohandlemultiplecallssafely,and3)Breakdowncomplexinitializationintosmaller,focusedfunctionstoenhancemodularityandm

開始GO:初學者指南開始GO:初學者指南Apr 26, 2025 am 12:21 AM

goisidealforbeginnersandsubableforforcloudnetworkservicesduetoitssimplicity,效率和concurrencyFeatures.1)installgromtheofficialwebsitealwebsiteandverifywith'.2)

進行並發模式:開發人員的最佳實踐進行並發模式:開發人員的最佳實踐Apr 26, 2025 am 12:20 AM

開發者應遵循以下最佳實踐:1.謹慎管理goroutines以防止資源洩漏;2.使用通道進行同步,但避免過度使用;3.在並發程序中顯式處理錯誤;4.了解GOMAXPROCS以優化性能。這些實踐對於高效和穩健的軟件開發至關重要,因為它們確保了資源的有效管理、同步的正確實現、錯誤的適當處理以及性能的優化,從而提升軟件的效率和可維護性。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!