搜尋
首頁資料庫mysql教程聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

模糊查詢,如查詢姓名包含」曉「的用戶,常見的寫法為like "%曉%",MySQL裡面他會全表掃描,資料量少還好,全表掃描也很快,隨著資料增加會變慢,上ES又很重。這篇文章就來跟大家介紹like模糊匹配查詢慢解決之道-MySQL全文索引。

需求

需要模糊匹配查詢一個單字

select * from t_phrase where LOCATE('昌',phrase) = 0;

select * from t_chinese_phrase where instr(phrase,'昌') > 0;

select * from t_chinese_phrase where phrase like '%昌%'

explain一下看看執行計劃

聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

由explain的結果可知,雖然我們給phrase建了索引,但是查詢的時候,索引是失效的。

原因: mysql的索引是B 樹結構,InnoDB在模糊查詢資料時使用"%xx" 會導致索引失效(此處就不展開講了)

從查詢時長上來看,花費時間:90ms

目前資料量:93230(9.3W)已經需要90ms,這個時間不太能接受,如果資料量增加,這個時間會不斷成長。

解決方案:

資料量不大的情況下,使用mysql的全文索引;
資料量比較大或mysql的全文索引不達預期的情況下,可以考慮使用ES

下面主要是MySQL的全文索引相關.

#全文索引介紹

1、發展歷史

  • 舊版的MySQL的全文索引只能用在MyISAM儲存引擎的char、varchar和text的欄位上。

  • MySQL5.6.24上InnoDB引擎也加入了全文索引。

2、全文索引

  • #全文檢索(Full-Text Search) 是儲存於資料庫中的整本書或整篇文章中的任意內容資訊尋找出來的技術。它可以根據需要獲得全文中有關章、節、段、詞等信息,也可以進行各種統計和分析

3、創建全文索引

若需為大量資料設定全文索引,建議先新增資料再建立索引。

1、建立表格時建立全文索引

create table 表名(
字段名1,
字段名2,
字段名3,
字段名4,
FULLTEXT full_index_name (字段名)
)ENGINE=InnoDB;

2、新增全文索引

create fulltext index 索引名稱on 表名(欄位名);

eg:

create table t_word
(
    id        int unsigned auto_increment comment '自增id' primary key,
    uid       char(32)     not null comment '32位唯一id',
    word      varchar(256) null comment '英文单词',
    translate varchar(256) null
);

create fulltext index full_idx_translate
    on t_word (translate);

create fulltext index full_idx_word
    on t_word (word);

INSERT INTO t_word (id, uid, word, translate) VALUES (1, '9d592499c65648b0a9519206688ef3f9', 'lion', '狮子');
INSERT INTO t_word (id, uid, word, translate) VALUES (2, 'ce26ac4239514bc6af481bcb1d9b67df', 'panda', '熊猫');
INSERT INTO t_word (id, uid, word, translate) VALUES (3, 'a7d6042853c44904b68275daafb44702', 'tiger', '老虎');
INSERT INTO t_word (id, uid, word, translate) VALUES (4, 'f13bd0a8ecea44fc9ade1625eeb4cc3c', 'goat', '山羊');
INSERT INTO t_word (id, uid, word, translate) VALUES (5, '27d5cbfc93a046388d712085e567474f', 'sheep', '绵羊');
INSERT INTO t_word (id, uid, word, translate) VALUES (6, 'ed35df138cf348aa937781be8ee21cbf', 'lamb', '羊羔');
INSERT INTO t_word (id, uid, word, translate) VALUES (7, 'fba5861d9527440990276e999f47ef8f', 'buffalo', '水牛');
INSERT INTO t_word (id, uid, word, translate) VALUES (8, '3a72e76f210841b1939fff0d3d721375', 'bull', '公牛');
INSERT INTO t_word (id, uid, word, translate) VALUES (9, '272e0b28ea7a48248a86f17533bf9943', 'cow', '母牛');
INSERT INTO t_word (id, uid, word, translate) VALUES (10, '47127adface54e418e4c1b9980af6d16', 'calf', '小牛');
INSERT INTO t_word (id, uid, word, translate) VALUES (11, '10592499c65648b0a9519206688ef3f9', 'little lion', '小狮子');
INSERT INTO t_word (id, uid, word, translate) VALUES (12, '1bf095110b634a01bee5b31c5ee7ee0c', 'little cow', '母牛');
INSERT INTO t_word (id, uid, word, translate) VALUES (13, '4813e588cde54c30bd65bfdbb243ad1f', 'little calf', '小小牛');
INSERT INTO t_word (id, uid, word, translate) VALUES (14, '5e377e281ad344048b6938a638b78ccb', 'little bull', '小公牛');
INSERT INTO t_word (id, uid, word, translate) VALUES (15, '2855ad0da2964c7682c178eb8271f13d', 'little buffalo', '小水牛');
INSERT INTO t_word (id, uid, word, translate) VALUES (16, '72f24c9a77644d57a36f3bdf2b8116b0', 'little lamb', '小羊羔');
INSERT INTO t_word (id, uid, word, translate) VALUES (17, '2d592499c65648b0a9519206688ef3f9', 'I''m a big lion', '我是一只大狮子');

3、刪除全文索引

   alter table 表名drop index 索引名稱;

4、全文索引使用

語法

MATCH(col1,col2,...) AGAINST(expr[search_modifier])
search_modifier:
{
    IN NATURAL LANGUAGE MODE
    | IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
    | IN BOOLEAN MODE
    | WITH QUERY EXPANSION
}

4.1  IN NATURAL LANGUAGE MODE

自然語言模式是MySQL 默認 的全文檢索模式。自然語言模式不能使用操作符,不能指定關鍵字必須出現或必須不能出現等複雜查詢。

// 默认是使用 in natural language mode
select * from t_word where match(word) against ('lion');
// 或者 显示写
select * from t_word where match(word) against ('lion' in natural language mode);

結果如下:

聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

4.2 IN BOOLEAN MODE

BOOLEAN模式可以使用操作符,可以支援指定關鍵字必須出現或必須不能出現或關鍵字的權重高還是低等複雜查詢。 推薦使用boolean模式

默認,包含該字#包括,這個字必須存在。 排除,詞不得出現。 包括,並提高排名值,查詢的結果會靠前包括,並降低排名值,查詢的結果會靠後將單字分組為子表達式(允許將它們作為一組包括在內,排除在外,排名等等)。 否定單字的排名值。 通配符在這個字的結尾。
操作者 描述
為空
-
>(大於號)
< ;
()
*
######“”######定義短語(與單字清單相對,整個短語匹配以包含或排除)。 ############

示例:

// 默认是使用 in natural language mode
select * from t_word where match(word) against (&#39;lion&#39;);
// 或者 显示写
select * from t_word where match(word) against (&#39;lion&#39; in natural language mode);

聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

// 排除包含lion记录、查询出包含cow或者little的记录,提升包含calf单词的排名,降低包含cow记录的排名,查询出以go开头的记录
select * from t_word where match(word) against (&#39;-lion cow little >calf <cow  go*&#39; in boolean mode) ;

聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

好像问题都解决了, 但是问题才刚开始


回到最开始的需求,我想模糊搜索

select * from t_word where  match(word) against(&#39;lio&#39; in boolean mode);

预期值:把包含lion的都查询出来 实际结果:啥都没有。

聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

全匹配查询的时候能查询出来

select * from t_word where  match(translate) against(&#39;小水牛&#39; in boolean mode);

聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

只查询部分查询不出来。如:下面只查询 "小水" 或者"水牛" 都没有数据

select * from t_word where  match(translate) against(&#39;小水&#39; in boolean mode);

聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

奇怪了,这咋没出来呢?

全文索引默认是只按照空格进行分词的,所以当我完整的单个单词去查询的时候是能查出来的。但是使用部分单词去查询或者使用部分中文去查询时,是查询不出来数据的,像中文需要使用中文分词器进行分词。

中文分词与全文索引

InnoDB默认的全文索引parser非常合适于Latin,因为Latin是通过空格来分词的。但对于像中文,日文和韩文来说,没有这样的分隔符。一个词可以由多个字来组成,所以我们需要用不同的方式来处理。在MySQL 5.7.6中我们能使用一个新的全文索引插件来处理它们:N-gram parser。

什么是N-gram?

在全文索引中,n-gram就是一段文字里面连续的n个字的序列。例如,用n-gram来对“齿轮传动”来进行分词,得到的结果如下:

N=1 : &#39;齿&#39;, &#39;轮&#39;, &#39;传&#39;, &#39;动&#39;;
N=2 : &#39;齿轮&#39;, &#39;轮传&#39;, &#39;传动&#39;;
N=3 : &#39;齿轮传&#39;, &#39;轮传动&#39;;
N=4 : &#39;齿轮传动&#39;;

这个上面这个N是怎么去配置的?

查一下目前的值

show variables like &#39;%token%&#39;;

聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

参数解析:

innodb_ft_min_token_size  
默认3,表示最小3个字符作为一个关键词,增大该值可减少全文索引的大小  
innodb_ft_max_token_size
默认84,表示最大84个字符作为一个关键词,限制该值可减少全文索引的大小
ngram_token_size
默认2,表示2个字符作为内置分词解析器的一个关键词,合法取值范围是1-10,如对“abcd”建立全文索引,关键词为’ab’,‘bc’,‘cd’ 当使用ngram分词解析器时,innodb_ft_min_token_size和innodb_ft_max_token_size 无效

修改方式

方式1: 在my.cnf中修改/添加参数

[mysqld]ngram_token_size = 1

方式2: 修改启动参数

mysqld --ngram_token_size=1复制代码

参数均不可动态修改,修改后需重启MySQL服务,并重新建立全文索引

实际使用

初始化测试数据

这里只提供部分测试数据,我下面sql使用全量数据,数据对不上

create table t_chinese_phrase
(
    id     int unsigned auto_increment comment &#39;id&#39;
        primary key,
    phrase varchar(32) not null comment &#39;词组&#39;
)
    collate = utf8mb4_general_ci;

INSERT INTO t_chinese_phrase (id, phrase) VALUES (278911, &#39;阿昌族&#39;);
INSERT INTO t_chinese_phrase (id, phrase) VALUES (279253, &#39;八一南昌起义&#39;);
INSERT INTO t_chinese_phrase (id, phrase) VALUES (282316, &#39;昌明&#39;);
INSERT INTO t_chinese_phrase (id, phrase) VALUES (282317, &#39;昌盛&#39;);
INSERT INTO t_chinese_phrase (id, phrase) VALUES (282318, &#39;昌言&#39;);
INSERT INTO t_chinese_phrase (id, phrase) VALUES (286534, &#39;东昌纸&#39;);
INSERT INTO t_chinese_phrase (id, phrase) VALUES (291525, &#39;海昌蓝&#39;);
INSERT INTO test.t_chinese_phrase (id, phrase) VALUES (346682, &#39;繁荣昌盛&#39;);
INSERT INTO test.t_chinese_phrase (id, phrase) VALUES (282317, &#39;昌盛&#39;);
INSERT INTO test.t_chinese_phrase (id, phrase) VALUES (287738, &#39;繁盛&#39;);
INSERT INTO test.t_chinese_phrase (id, phrase) VALUES (287736, &#39;繁荣&#39;);

添加索引

mysql 全文索引使用倒排索引为 full inverted index 
  结构:{单词,(单词所在文档的ID,单词在具体文件中的位置)}

添加索引:

alter  table t_chinese_phrase add fulltext ful_phrase (phrase) with parser ngram;

建完索引,我们可以通过查询INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE和INFORMATION_SCHEMA.INNODB_FT_TABLE_TABLE来查询哪些词在全文索引里面。这是一个非常有用的调试工具。如果我们发现一个包含某个词的文档,没有如我们所期望的那样出现在查询结果中,那么这个词可能是因为某些原因不在全文索引里面。比如,它含有stopword,或者它的大小小于ngram_token_size等等。这个时候我们就可以通过查询这两个表来确认。下面是一个简单的例子:

# test: 库名  t_chinese_phrase: 表名字
SET GLOBAL innodb_ft_aux_table="test/t_chinese_phrase";
# 查询分词情况
SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE;
# 查询分词情况
select * from information_schema.innodb_ft_index_table;

查询结果如下:

聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

因为我们上面设置了分词数是1,所以,可以看到都是按照一个词进行分词的。

字段解析:
FIRST_DOC_ID :word第一次出现的文档ID
LAST_DOC_ID : word最后一次出现的文档ID
DOC_COUNT :含有word的文档个数
DOC_ID :当前文档ID
POSITION : word 当在前文档ID的位置

查询

1、使用自然语言模式 NATURAL LANGUAGE MODE 查询

在自然语言模式(NATURAL LANGUAGE MODE)下,文本的查询被转换为n-gram分词查询的并集

例如,当ngram_token_size = 1 时,(‘繁荣昌盛’)转换为(‘繁 荣 昌 盛’)。下面一个例子:

SELECT * FROM t_chinese_phrase WHERE MATCH (phrase) AGAINST (&#39;繁荣昌盛&#39; in natural language mode) ;

聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

2、使用布尔模式(BOOLEAN MODE)查询

布尔模式(BOOLEAN MODE)文本查询被转化为n-gram分词的短语查询

例如,当ngram_token_size = 1 时,(‘繁荣昌盛’)转换为(‘”繁荣昌盛“’)。下面一个例子:

SELECT * FROM t_chinese_phrase WHERE MATCH (phrase) AGAINST (&#39;繁荣昌盛&#39; in boolean  mode) ;

1聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

实际使用

回到我们最开始的查询需求,看看实际的效果

查询包含了“昌”的数据

SELECT * FROM t_chinese_phrase WHERE MATCH (phrase) AGAINST (&#39;昌&#39; IN boolean  MODE) ;
SELECT * FROM t_chinese_phrase WHERE MATCH (phrase) AGAINST (&#39;昌&#39; ) order by id asc;

1聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

可以看到结果:目前“昌”在任意位置都能被查询到。

查询执行计划如下:

1聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢

耗时31ms(不走索引是90ms),耗时差不多是之前的1/3

注意点

1、自然语言全文索引创建索引时的字段需与查询的字段保持一致,即MATCH里的字段必须和FULLTEXT里的一模一样;

2、自然语言检索时,检索的关键字在所有数据中不能超过50%(即常见词),则不会检索出结果。可以通过布尔检索查询;

3、在mysql的stopword中的单词检索不出结果。可通过

SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD

查询所有的stopword。遇到这种情况,有两种解决办法:

(1)stopword一般是mysql自建的,但可以通过设置ft_stopword_file变量为自定义文件,从而自己设置stopword,设置完成后需要重新创建索引。但不建议使用这种方法;

(2)使用布尔索引查询

4、小于最短长度和大于最长长度的关键词无法查出结果。可以通过设置对应的变量来改变长度限制,修改后需要重新创建索引。

myisam引擎下对应的变量名为ft_min_word_len和ft_max_word_len

innodb引擎下对应的变量名为innodb_ft_min_token_size和innodb_ft_max_token_size

5、MySQL5.7.6之前的版本不支持中文,需使用第三方插件

6、全文索引只能在 InnoDB(MySQL 5.6以后) 或 MyISAM 的表上使用,并且只能用于创建 char,varchar,text 类型的列。

【相关推荐:mysql视频教程

以上是聊聊MySQL全文索引怎麼解決like模糊匹配查詢慢的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
mysql:blob和其他無-SQL存儲,有什麼區別?mysql:blob和其他無-SQL存儲,有什麼區別?May 13, 2025 am 12:14 AM

mysql'sblobissuitableForStoringBinaryDataWithInareLationalDatabase,而ilenosqloptionslikemongodb,redis和calablesolutionsolutionsolutionsoluntionsoluntionsolundortionsolunsonstructureddata.blobobobissimplobisslowdeperformberbutslowderformandperformancewithlararengedata;

mySQL添加用戶:語法,選項和安全性最佳實踐mySQL添加用戶:語法,選項和安全性最佳實踐May 13, 2025 am 12:12 AM

toaddauserinmysql,使用:createUser'username'@'host'Indessify'password'; there'showtodoitsecurely:1)choosethehostcarecarefullytocon trolaccess.2)setResourcelimitswithoptionslikemax_queries_per_hour.3)usestrong,iniquepasswords.4)Enforcessl/tlsconnectionswith

MySQL:如何避免字符串數據類型常見錯誤?MySQL:如何避免字符串數據類型常見錯誤?May 13, 2025 am 12:09 AM

toAvoidCommonMistakeswithStringDatatatPesInMysQl,CloseStringTypenuances,chosethirtightType,andManageEngencodingAndCollat​​ionsEttingSefectery.1)usecharforfixed lengengtrings,varchar forvariable-varchar forbariaible length,andtext/blobforlargerdataa.2 seterters seterters seterters

mySQL:字符串數據類型和枚舉?mySQL:字符串數據類型和枚舉?May 13, 2025 am 12:05 AM

mysqloffersechar,varchar,text,and denumforstringdata.usecharforfixed Lengttrings,varcharerforvariable長度,文本forlarger文本,andenumforenforcingDataAntegrityWithaEtofValues。

mysql blob:如何優化斑點請求mysql blob:如何優化斑點請求May 13, 2025 am 12:03 AM

優化MySQLBLOB請求可以通過以下策略:1.減少BLOB查詢頻率,使用獨立請求或延遲加載;2.選擇合適的BLOB類型(如TINYBLOB);3.將BLOB數據分離到單獨表中;4.在應用層壓縮BLOB數據;5.對BLOB元數據建立索引。這些方法結合實際應用中的監控、緩存和數據分片,可以有效提升性能。

將用戶添加到MySQL:完整的教程將用戶添加到MySQL:完整的教程May 12, 2025 am 12:14 AM

掌握添加MySQL用戶的方法對於數據庫管理員和開發者至關重要,因為它確保數據庫的安全性和訪問控制。 1)使用CREATEUSER命令創建新用戶,2)通過GRANT命令分配權限,3)使用FLUSHPRIVILEGES確保權限生效,4)定期審計和清理用戶賬戶以維護性能和安全。

掌握mySQL字符串數據類型:varchar vs.文本與char掌握mySQL字符串數據類型:varchar vs.文本與charMay 12, 2025 am 12:12 AM

chosecharforfixed-lengthdata,varcharforvariable-lengthdata,andtextforlargetextfield.1)chariseffity forconsistent-lengthdatalikecodes.2)varcharsuitsvariable-lengthdatalikenames,ballancingflexibilitibility andperformance.3)

MySQL:字符串數據類型和索引:最佳實踐MySQL:字符串數據類型和索引:最佳實踐May 12, 2025 am 12:11 AM

在MySQL中處理字符串數據類型和索引的最佳實踐包括:1)選擇合適的字符串類型,如CHAR用於固定長度,VARCHAR用於可變長度,TEXT用於大文本;2)謹慎索引,避免過度索引,針對常用查詢創建索引;3)使用前綴索引和全文索引優化長字符串搜索;4)定期監控和優化索引,保持索引小巧高效。通過這些方法,可以在讀取和寫入性能之間取得平衡,提升數據庫效率。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境