搜尋
首頁web前端js教程淺析node怎麼實現ocr

淺析node怎麼實現ocr

Oct 31, 2022 pm 07:09 PM
nodejsnode

怎麼實現ocr(光學字元辨識)?以下這篇文章跟大家介紹一下使用node實作實作ocr的方法,希望對大家有幫助!

淺析node怎麼實現ocr

ocr即光學字元識別,簡單的來說就是把圖片上的文字辨識出來。

很遺憾我只是一個底層的web程式設計師?,不咋會AI,要想實現ocr,只能找找第三方函式庫了。

python語言有很多ocr的第三方函式庫,找了很久nodejs實作ocr的第三方函式庫,最後發現了tesseract.js這個函式庫還是能很方便的實作ocr。 【相關教學推薦:nodejs影片教學

效果展示

線上範例: http://www.lolmbbs.com/tool/ ocr

淺析node怎麼實現ocr

詳細程式碼

#tesserract.js 這個函式庫提供了多個版本可供選擇,我這裡使用的是離線的版本tesseract.js-offline,畢竟誰都由網路不好的時候。
淺析node怎麼實現ocr
預設範例程式碼

const { createWorker } = require('tesseract.js');
const path = require('path');

const worker = createWorker({
  langPath: path.join(__dirname, '..', 'lang-data'), 
  logger: m => console.log(m),
});

(async () => {
  await worker.load();
  await worker.loadLanguage('eng');
  await worker.initialize('eng');
  const { data: { text } } = await worker.recognize(path.join(__dirname, '..', 'images', 'testocr.png'));
  console.log(text);
  await worker.terminate();
})();

1. 支援多語言識別

tesseract.js 離線版本預設範例代碼只支援識別英文,如果識別中文,結果會是一堆問號。但幸運的是你可以匯入多個訓練好的語言模型,讓它支援多個語言的辨識。

  • 從https://github.com/naptha/tessdata/tree/gh-pages/4.0.0這裡下載你需要的對應語言模型,放入根目錄下的lang-data目錄下
    我這裡選擇了中(chi_sim.traineddata.gz)日(jpn.traineddata.gz)英(eng.traineddata.gz )三國語言模型。

  • 修改程式碼中載入和初始化模型的語言項目配置,來同時支援中日英三國語言。

await worker.loadLanguage('chi_sim+jpn+eng');
await worker.initialize('chi_sim+jpn+eng');

為了方便大家的測試,我在範例的離線版本,已經放入了中日韓三國語言的訓練模型和實例程式碼以及測試圖片。
https://github.com/Selenium39/tesseract.js-offline

2. 提高識別效能

如果你運行了離線的版本,你會發現模型的載入和ocr的辨識有點慢。可以透過這兩個步驟優化。

  • web專案中,你可以在應用一啟動的時候就載入模型,這樣後續接收到ocr請求的時候就可以不用等待模型載入了。

  • 參考Why I refactor tesseract.js v2?這篇博客,可以透過createScheduler方法添加多個worker線程來並發的處理ocr請求。

多執行緒並發處理ocr請求範例

const Koa = require('koa')
const Router = require('koa-router')
const router = new Router()
const app = new Koa()
const path = require('path')
const moment = require('moment')
const { createWorker, createScheduler } = require('tesseract.js')

;(async () => {
  const scheduler = createScheduler()
  for (let i = 0; i < 4; i++) {
    const worker = createWorker({
      langPath: path.join(__dirname, &#39;.&#39;, &#39;lang-data&#39;),
      cachePath: path.join(__dirname, &#39;.&#39;),
      logger: m => console.log(`${moment().format(&#39;YYYY-MM-DD HH:mm:ss&#39;)}-${JSON.stringify(m)}`)
    })
    await worker.load()
    await worker.loadLanguage(&#39;chi_sim+jpn+eng&#39;)
    await worker.initialize(&#39;chi_sim+jpn+eng&#39;)
    scheduler.addWorker(worker)
  }
  app.context.scheduler = scheduler
})()

router.get(&#39;/test&#39;, async (ctx) => {
  const { data: { text } } = await ctx.scheduler.addJob(&#39;recognize&#39;, path.join(__dirname, &#39;.&#39;, &#39;images&#39;, &#39;chinese.png&#39;))
  // await ctx.scheduler.terminate()
  ctx.body = text
})

app.use(router.routes(), router.allowedMethods())
app.listen(3002)

發起並發請求,可以看到多個worker再並發執行ocr任務

ab -n 4 -c 4 localhost:3002/test

淺析node怎麼實現ocr

3.前端程式碼

#效果展示中的前端程式碼主要是用了elementui元件和vue-cropper這個元件實作。

vue-cropper組件具體的使用可以參考我的這篇博客vue圖片裁剪:使用vue-cropper做圖片裁剪

ps: 上傳圖片的時候可以先在前端載入上傳圖片的base64,先看到上傳的圖片,再請後端上傳圖片,對使用者的體驗比較好

完整程式碼如下

<template>
  <div>
    <div style="margin-top:30px;height:500px">
      <div class="show">
        <vueCropper
          v-if="imgBase64"
          ref="cropper"
          :img="imgBase64"
          :output-size="option.size"
          :output-type="option.outputType"
          :info="true"
          :full="option.full"
          :can-move="option.canMove"
          :can-move-box="option.canMoveBox"
          :original="option.original"
          :auto-crop="option.autoCrop"
          :fixed="option.fixed"
          :fixed-number="option.fixedNumber"
          :center-box="option.centerBox"
          :info-true="option.infoTrue"
          :fixed-box="option.fixedBox"
          :max-img-size="option.maxImgSize"
          style="background-image:none"
          @mouseenter.native="enter"
          @mouseleave.native="leave"
        ></vueCropper>
        <el-upload
          v-else
          ref="uploader"
          class="avatar-uploader"
          drag
          multiple
          action=""
          :show-file-list="false"
          :limit="1"
          :http-request="upload"
        >
          <i class="el-icon-plus avatar-uploader-icon"></i>
        </el-upload>
      </div>
      <div
        class="ocr"
        @mouseleave="leaveCard"
      >
        <el-card
          v-for="(item,index) in ocrResult"
          :key="index"
          class="card-box"
          @mouseenter.native="enterCard(item)"
        >
          <el-form
            size="small"
            label-width="100px"
            label-position="left"
          >
            <el-form-item label="识别结果">
              <el-input v-model="item.text"></el-input>
            </el-form-item>
          </el-form>
        </el-card>
      </div>
    </div>
    <div style="margin-top:10px">
      <el-button
        size="small"
        type="primary"
        style="width:60%"
        @click="doOcr"
      >
        文字识别(OCR)
      </el-button>
    </div>
  </div>
</template>

<script>
import { uploadImage, ocr } from &#39;../utils/api&#39;
export default {
  name: &#39;Ocr&#39;,
  data () {
    return {
      imgSrc: &#39;&#39;,
      imgBase64: &#39;&#39;,
      option: {
        info: true, // 裁剪框的大小信息
        outputSize: 0.8, // 裁剪生成图片的质量
        outputType: &#39;jpeg&#39;, // 裁剪生成图片的格式
        canScale: false, // 图片是否允许滚轮缩放
        autoCrop: true, // 是否默认生成截图框
        fixedBox: false, // 固定截图框大小 不允许改变
        fixed: false, // 是否开启截图框宽高固定比例
        fixedNumber: [7, 5], // 截图框的宽高比例
        full: true, // 是否输出原图比例的截图
        canMove: false, // 时候可以移动原图
        canMoveBox: true, // 截图框能否拖动
        original: false, // 上传图片按照原始比例渲染
        centerBox: true, // 截图框是否被限制在图片里面
        infoTrue: true, // true 为展示真实输出图片宽高 false 展示看到的截图框宽高
        maxImgSize: 10000
      },
      ocrResult: []
    }
  },
  methods: {
    upload (fileObj) {
      const file = fileObj.file
      const reader = new FileReader()
      reader.readAsDataURL(file)
      reader.onload = () => {
        this.imgBase64 = reader.result
      }
      const formData = new FormData()
      formData.append(&#39;image&#39;, file)
      uploadImage(formData).then(res => {
        this.imgUrl = res.imgUrl
      })
    },
    doOcr () {
      const cropAxis = this.$refs.cropper.getCropAxis()
      const imgAxis = this.$refs.cropper.getImgAxis()
      const cropWidth = this.$refs.cropper.cropW
      const cropHeight = this.$refs.cropper.cropH
      const position = [
        (cropAxis.x1 - imgAxis.x1) / this.$refs.cropper.scale,
        (cropAxis.y1 - imgAxis.y1) / this.$refs.cropper.scale,
        cropWidth / this.$refs.cropper.scale,
        cropHeight / this.$refs.cropper.scale
      ]
      const rectangle = {
        top: position[1],
        left: position[0],
        width: position[2],
        height: position[3]
      }
      if (this.imgUrl) {
        ocr({ imgUrl: this.imgUrl, rectangle }).then(res => {
          this.ocrResult.push(
            {
              text: res.text,
              cropInfo: { //截图框显示的大小
                width: cropWidth,
                height: cropHeight,
                left: cropAxis.x1,
                top: cropAxis.y1
              },
              realInfo: rectangle //截图框在图片上真正的大小
            })
        })
      }
    },
    enterCard (item) {
      this.$refs.cropper.goAutoCrop()// 重新生成自动裁剪框
      this.$nextTick(() => {
        // if cropped and has position message, update crop box
        // 设置自动裁剪框的宽高和位置
        this.$refs.cropper.cropOffsertX = item.cropInfo.left
        this.$refs.cropper.cropOffsertY = item.cropInfo.top
        this.$refs.cropper.cropW = item.cropInfo.width
        this.$refs.cropper.cropH = item.cropInfo.height
      })
    },
    leaveCard () {
      this.$refs.cropper.clearCrop()
    },
    enter () {
      if (this.imgBase64 === &#39;&#39;) {
        return
      }
      this.$refs.cropper.startCrop() // 开始裁剪
    },
    leave () {
      this.$refs.cropper.stopCrop()// 停止裁剪
    }
  }

}
</script>

更多node相關知識,請訪問:nodejs 教程

以上是淺析node怎麼實現ocr的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:csdn。如有侵權,請聯絡admin@php.cn刪除
JavaScript是用C編寫的嗎?檢查證據JavaScript是用C編寫的嗎?檢查證據Apr 25, 2025 am 12:15 AM

是的,JavaScript的引擎核心是用C語言編寫的。 1)C語言提供了高效性能和底層控制,適合JavaScript引擎的開發。 2)以V8引擎為例,其核心用C 編寫,結合了C的效率和麵向對象特性。 3)JavaScript引擎的工作原理包括解析、編譯和執行,C語言在這些過程中發揮關鍵作用。

JavaScript的角色:使網絡交互和動態JavaScript的角色:使網絡交互和動態Apr 24, 2025 am 12:12 AM

JavaScript是現代網站的核心,因為它增強了網頁的交互性和動態性。 1)它允許在不刷新頁面的情況下改變內容,2)通過DOMAPI操作網頁,3)支持複雜的交互效果如動畫和拖放,4)優化性能和最佳實踐提高用戶體驗。

C和JavaScript:連接解釋C和JavaScript:連接解釋Apr 23, 2025 am 12:07 AM

C 和JavaScript通過WebAssembly實現互操作性。 1)C 代碼編譯成WebAssembly模塊,引入到JavaScript環境中,增強計算能力。 2)在遊戲開發中,C 處理物理引擎和圖形渲染,JavaScript負責遊戲邏輯和用戶界面。

從網站到應用程序:JavaScript的不同應用從網站到應用程序:JavaScript的不同應用Apr 22, 2025 am 12:02 AM

JavaScript在網站、移動應用、桌面應用和服務器端編程中均有廣泛應用。 1)在網站開發中,JavaScript與HTML、CSS一起操作DOM,實現動態效果,並支持如jQuery、React等框架。 2)通過ReactNative和Ionic,JavaScript用於開發跨平台移動應用。 3)Electron框架使JavaScript能構建桌面應用。 4)Node.js讓JavaScript在服務器端運行,支持高並發請求。

Python vs. JavaScript:比較用例和應用程序Python vs. JavaScript:比較用例和應用程序Apr 21, 2025 am 12:01 AM

Python更適合數據科學和自動化,JavaScript更適合前端和全棧開發。 1.Python在數據科學和機器學習中表現出色,使用NumPy、Pandas等庫進行數據處理和建模。 2.Python在自動化和腳本編寫方面簡潔高效。 3.JavaScript在前端開發中不可或缺,用於構建動態網頁和單頁面應用。 4.JavaScript通過Node.js在後端開發中發揮作用,支持全棧開發。

C/C在JavaScript口譯員和編譯器中的作用C/C在JavaScript口譯員和編譯器中的作用Apr 20, 2025 am 12:01 AM

C和C 在JavaScript引擎中扮演了至关重要的角色,主要用于实现解释器和JIT编译器。1)C 用于解析JavaScript源码并生成抽象语法树。2)C 负责生成和执行字节码。3)C 实现JIT编译器,在运行时优化和编译热点代码,显著提高JavaScript的执行效率。

JavaScript在行動中:現實世界中的示例和項目JavaScript在行動中:現實世界中的示例和項目Apr 19, 2025 am 12:13 AM

JavaScript在現實世界中的應用包括前端和後端開發。 1)通過構建TODO列表應用展示前端應用,涉及DOM操作和事件處理。 2)通過Node.js和Express構建RESTfulAPI展示後端應用。

JavaScript和Web:核心功能和用例JavaScript和Web:核心功能和用例Apr 18, 2025 am 12:19 AM

JavaScript在Web開發中的主要用途包括客戶端交互、表單驗證和異步通信。 1)通過DOM操作實現動態內容更新和用戶交互;2)在用戶提交數據前進行客戶端驗證,提高用戶體驗;3)通過AJAX技術實現與服務器的無刷新通信。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能