搜尋
首頁後端開發Python教學簡單介紹Python遺傳演算法Geatpy工具箱

【相關推薦:Python3影片教學

一、 什麼是遺傳演算法?

遺傳演算法是模擬生物遺傳學和自然選擇機理,透過人工方式所建構的一類搜尋演算法,從某種程度上說遺傳演算法是對生物演化過程的數學方式模擬。生物族群的生存過程普遍遵循達爾文進化準則,群體中的個體根據對環境的適應能力而被大自然所選擇或淘汰。演化過程的結果反映在個體的結構上,其染色體包含若干基因,相應的表現型和基因型的連結反映了個體的外在特性與內在機理間邏輯關係。透過個體之間的交叉、變異來適應大自然環境。生物染色體用數學方式或電腦方式來體現就是一串數碼,仍叫染色體,有時也叫個體;適應能力是對應著一個染色體的一個數值來衡量;染色體的選擇或淘汰則按所面對的問題是求最大還是最小來進行。

#二、遺傳演算法庫Geatpy

2.1 遺傳演算法工具箱Geatpy參數介紹

# API官方參考文件

population參數【重要屬性:Chrom,Phen,Objv,CV,FitnV】

  • sizes : int - 族群規模,即族群的個體數目。
  • ChromNum : int - 染色體的數目,即每個個體有多少染色體。
  • Encoding : str - 染色體編碼方式, 'BG':二進位/格雷編碼; 'RI':實整數編碼,即實數和整數的混合編碼; 'P':排列編碼
  • #Field : array - 譯碼矩陣
  • Chrom : array - 族群染色體矩陣,每一行對應一個個體的一條染色體。
  • Lind : int - 族群染色體長度。
  • ObjV : array - 族群目標函數值矩陣,每一行對應一個個體的目標函數值,每一列對應一個目標
  • FitnV : array - 族群個體適應度列向量,每個元素對應一個個體的適應度,最小適應度為0
  • CV : array - CV(Constraint Violation Value)是用來定量描述違反約束條件程度的矩陣,每行對應一個個體,每列對應一個限制條件
  • Phen : array - 族群表現型矩陣(即族群各染色體解碼後所代表的決策變數所組成的矩陣)。
  • 如果透過CV矩陣基於可行性法則進行約束的設置,那麼不等式限制需要≤,等式限制需要傳入abs( ) (因為遵循值越大,適應度越小的原則)

  • ea.Problem.init()中的lbin與ubin(決策變數範圍邊界矩陣)表示範圍區間的開閉,1閉合0開區間

#Geatpy 結果參數介紹

success: True or False, 表示演算法是否成功求解。

stopMsg: 儲存著演算法停止原因的字串。

optPop: 儲存演算法求解結果的族群物件。如果無可行解,則optPop.sizes=0。 optPop.Phen為決策變數矩陣,optPop.ObjV為目標函數值矩陣。

lastPop: 演算法演化結束後的最後一代族群物件。

Vars: 等於optPop.Phen,此處即最優解。若無可行解,則Vars=None。

ObjV: 等於optPop.ObjV,此處為最優解對應的目標函數值。若無可行解,ObjV=None。

CV: 等於optPop.CV,此處即最優解對應的違反約束程度矩陣。若無可行解,CV=None。

startTime: 程式執行開始時間。

endTime: 程式執行結束時間。

executeTime: 演算法 所用時間。

nfev: 演算法評價次數

gd: (多目標最佳化且給定了理論最優解時才有) GD指標值。

igd: (多目標最佳化且給定了理論最優解時才有) IGD指標值。

hv: (多目標最佳化才有) HV指標值。

spacing: (多目標最佳化才有) Spacing指標值。

三、最佳實務

3.1 程式碼範例| 參數範本

解集:

header_regex = '|'.join(['{}'] * len(headers))
header_str = header_regex.format(*[str(key).center(width) for key, width in zip(headers, widths)])
print("=" * len(header_str))
            print(header_str)
            print("-" * len(header_str))

gen: 演化代數     
eval:記錄評估次數       
f\_opt: 當代最優個體的目標函數值 \_max=當代種群最大函數值         
f\_min 最小  f\_avg : 平均水平         
f\_std: 標準約束水平

3.2 最佳實踐

使用geatpy函式庫求解有向無環圖最短路

程式碼【最短路】一:使用geatpy函式庫

import numpy as np
import geatpy as ea
class MyProblem(ea.Problem):  # 继承Problem父类
    def __init__(self):
        name = 'Shortest_Path'  # 初始化name(函数名称,可以随意设置)
        M = 1  # 初始化M(目标维数)
        maxormins = [1]  # 初始化maxormins(目标最小最大化标记列表,1:最小化该目标;-1:最大化该目标)
        Dim = 10  # 初始化Dim(决策变量维数)
        varTypes = [1] * Dim  # 初始化varTypes(决策变量的类型,元素为0表示对应的变量是连续的;1表示是离散的)
        lb = [0] * Dim  # 决策变量下界
        ub = [9] * Dim  # 决策变量上界
        lbin = [1] * Dim  # 决策变量下边界 1表示闭合区间,0表示开区间
        ubin = [1] * Dim  # 决策变量上边界
        # 调用父类构造方法完成实例化
        ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin)
        # 设置每一个结点下一步可达的结点(结点从1开始数,因此列表nodes的第0号元素设为空列表表示无意义)
        self.nodes = [[], [2, 3], [3, 4, 5], [5, 6], [7, 8], [4, 6], [7, 9], [8, 9], [9, 10], [10]]
        # 设置有向图中各条边的权重
        self.weights = {'(1, 2)': 36, '(1, 3)': 27, '(2, 4)': 18, '(2, 5)': 20, '(2, 3)': 13, '(3, 5)': 12,
                        '(3, 6)': 23,
                        '(4, 7)': 11, '(4, 8)': 32, '(5, 4)': 16, '(5, 6)': 30, '(6, 7)': 12, '(6, 9)': 38,
                        '(7, 8)': 20,
                        '(7, 9)': 32, '(8, 9)': 15, '(8, 10)': 24, '(9, 10)': 13}
    def decode(self, priority):  # 将优先级编码的染色体解码得到一条从节点1到节点10的可行路径
        edges = []  # 存储边
        path = [1]  # 结点1是路径起点
        while not path[-1] == 10:  # 开始从起点走到终点
            currentNode = path[-1]  # 得到当前所在的结点编号
            nextNodes = self.nodes[currentNode]  # 获取下一步可达的结点组成的列表
            chooseNode = nextNodes[np.argmax(
                priority[np.array(nextNodes) - 1])]  # 从NextNodes中选择优先级更高的结点作为下一步要访问的结点,因为结点从1数起,而下标从0数起,因此要减去1
            path.append(chooseNode)
            edges.append((currentNode, chooseNode))
        return path, edges
    def aimFunc(self, pop):  # 目标函数
        pop.ObjV = np.zeros((pop.sizes, 1))  # 初始化ObjV
        for i in range(pop.sizes):  # 遍历种群的每个个体,分别计算各个个体的目标函数值
            priority = pop.Phen[i, :]
            path, edges = self.decode(priority)  # 将优先级编码的染色体解码得到访问路径及经过的边
            pathLen = 0
            for edge in edges:
                key = str(edge)  # 根据路径得到键值,以便根据键值找到路径对应的长度
                if not key in self.weights:
                    raise RuntimeError("Error in aimFunc: The path is invalid. (当前路径是无效的。)", path)
                pathLen += self.weights[key]  # 将该段路径长度加入
            pop.ObjV[i] = pathLen  # 计算目标函数值,赋值给pop种群对象的ObjV属性
## 执行脚本
if __name__ == "__main__":
    # 实例化问题对象
    problem = MyProblem()
    # 构建算法
    algorithm = ea.soea_EGA_templet(problem,
                                    ea.Population(Encoding='RI', NIND=4),
                                    MAXGEN=10,  # 最大进化代数
                                    logTras=1)  # 表示每隔多少代记录一次日志信息
    # 求解
    res = ea.optimize(algorithm, verbose=True, drawing=1, outputMsg=False, drawLog=False, saveFlag=True,
                      dirName='result')
    print('最短路程为:%s' % (res['ObjV'][0][0]))
    print('最佳路线为:')
    best_journey, edges = problem.decode(res['Vars'][0])
    for i in range(len(best_journey)):
        print(int(best_journey[i]), end=' ')
    print()

【相關推薦:

Python3影片教學

以上是簡單介紹Python遺傳演算法Geatpy工具箱的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:脚本之家。如有侵權,請聯絡admin@php.cn刪除
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!