推薦學習:Redis影片教學
#方法一:基於Redis的setnx的操作
我們在使用Redis的分散式鎖的時候,大家都知道是依靠了setnx的指令,在CAS(Compare and swap)的操作的時候,同時給指定的key設置了過期實踐(expire),我們在限流的主要目的就是為了在單位時間內,有且僅有N數量的請求能夠存取我的代碼程式。所以依靠setnx可以很輕鬆的做到這方面的功能。
例如我們需要在10秒內限定20個請求,那麼我們在setnx的時候可以設定過期時間10,當請求的setnx數量達到20時候即達到了限流效果。程式碼比較簡單就不做展示了。
當然這種做法的弊端是很多的,例如當統計1-10秒的時候,無法統計2-11秒之內,如果需要統計N秒內的M個請求,那麼我們的Redis中需要保持N個key等等問題。
在具體實作的時候,可以考慮使用攔截器HandlerInterceptor :
public class RequestCountInterceptor implements HandlerInterceptor { private LimitPolicy limitPolicy; public RequestCountInterceptor(LimitPolicy limitPolicy) { this.limitPolicy = limitPolicy; } @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { if (!limitPolicy.canDo()) { return false; } return true; } }
同時加入一個設定LimitConfiguration:
@Configuration public class LimitConfiguration implements WebMvcConfigurer { @Override public void addInterceptors(InterceptorRegistry registry) { registry.addInterceptor(new RequestCountInterceptor(new RedisLimit1())).addPathPatterns("/my/increase"); } }
這樣每次在/my/increase要求到達Controller之前按策略RedisLimit1進行限流,原先Controller裡面的程式碼就不用修改了:
@RestController @RequestMapping("my") public class MyController { int i = 0; @RequestMapping("/increase") public int increase() { return i++; } }
具體的限流邏輯程式碼是在RedisLimit1類別中:
/** * 方法一:基于Redis的setnx的操作 */ public class RedisLimit1 extends LimitPolicy { static { setNxExpire(); } private static boolean setNxExpire() { SetParams setParams = new SetParams(); setParams.nx(); setParams.px(TIME); String result = jedis.set(KEY, COUNT + "", setParams); if (SUCCESS.equals(result)) { return true; } return false; } @Override public boolean canDo() { if (setNxExpire()) { //设置成功,说明原先不存在,成功设置为COUNT return true; } else { //设置失败,说明已经存在,直接减1,并且返回 return jedis.decrBy(KEY, 1) > 0; } } } public abstract class LimitPolicy { public static final int COUNT = 10; //10 request public static final int TIME= 10*1000 ; // 10s public static final String SUCCESS = "OK"; static Jedis jedis = new Jedis(); abstract boolean canDo(); }
這樣實現的一個效果是每秒最多請求10次。
方法二:基於Redis的資料結構zset
其實限流涉及的最主要的就是滑動窗口,上面也提到1-10怎麼變成2-11。其實也就是起始值和末端值都各 1即可。
而我們如果用Redis的list資料結構可以輕易的實作該功能
我們可以將請求打造成一個zset數組,當每一次請求進來的時候,value保持唯一,可以用UUID生成,而score可以用當前時間戳表示,因為score我們可以用來計算當前時間戳記之內有多少的請求數量。而zset資料結構也提供了zrange方法讓我們可以很輕易的取得到2個時間戳內有多少請求
/** * 方法二:基于Redis的数据结构zset */ public class RedisLimit2 extends LimitPolicy { public static final String KEY2 = "LIMIT2"; @Override public boolean canDo() { Long currentTime = new Date().getTime(); System.out.println(currentTime); if (jedis.zcard(KEY2) > 0) { // 这里不能用get判断,会报错:WRONGTYPE Operation against a key holding the wrong kind of value Integer count = jedis.zrangeByScore(KEY2, currentTime - TIME, currentTime).size(); // 注意这里使用zrangeByScore,以时间作为score。zrange key start stop 命令的start和stop是序号。 System.out.println(count); if (count != null && count > COUNT) { return false; } } jedis.zadd(KEY2, Double.valueOf(currentTime), UUID.randomUUID().toString()); return true; } }
透過上述程式碼可以做到滑動視窗的效果,並且能保證每N秒內至多M個請求,缺點就是zset的資料結構會越來越大。實作方式相對也是比較簡單的。
方法三:基於Redis的令牌桶演算法
提到限流就不得不提到令牌桶演算法了。令牌桶演算法提及到輸入速率和輸出速率,當輸出速率大於輸入速率,那麼就是超出流量限制了。也就是說我們每訪問一次請求的時候,可以從Redis中獲取一個令牌,如果拿到令牌了,那就表示沒超出限制,而如果拿不到,則結果相反。
依靠上述的思想,我們可以結合Redis的List資料結構很輕易的做到這樣的程式碼,只是簡單實作 依靠List的leftPop來取得令牌。
首先配置一個定時任務,透過redis的list的rpush方法每秒插入一個令牌:
@Configuration //1.主要用于标记配置类,兼备Component的效果。 @EnableScheduling // 2.开启定时任务 public class SaticScheduleTask { //3.添加定时任务 @Scheduled(fixedRate = 1000) private void configureTasks() { LimitPolicy.jedis.rpush("LIMIT3", UUID.randomUUID().toString()); } }
限流時,透過list的lpop方法從redis中取得對應的令牌,如果獲取成功表明可以執行請求:
/** * 方法三:令牌桶 */ public class RedisLimit3 extends LimitPolicy { public static final String KEY3 = "LIMIT3"; @Override public boolean canDo() { Object result = jedis.lpop(KEY3); if (result == null) { return false; } return true; } }
推薦學習:Redis視訊教學
以上是Redis實現限流器的三種方法(總結分享)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Redis和SQL數據庫的主要區別在於:Redis是內存數據庫,適用於高性能和靈活性需求;SQL數據庫是關係型數據庫,適用於復雜查詢和數據一致性需求。具體來說,1)Redis提供高速數據訪問和緩存服務,支持多種數據類型,適用於緩存和實時數據處理;2)SQL數據庫通過表格結構管理數據,支持複雜查詢和事務處理,適用於電商和金融系統等需要數據一致性的場景。

REDISACTSASBOTHADATASTOREANDASERVICE.1)ASADATASTORE,ITUSESIN-MEMORYSTOOGATOFORFOFFASTESITION,支持VariousDatharptructuresLikeKey-valuepairsandsortedsetsetsetsetsetsetsets.2)asaservice,ItprovidespunctionslikeItionitionslikepunikeLikePublikePublikePlikePlikePlikeAndluikeAndluAascriptingiationsmpleplepleclexplectiations

Redis與其他數據庫相比,具有以下獨特優勢:1)速度極快,讀寫操作通常在微秒級別;2)支持豐富的數據結構和操作;3)靈活的使用場景,如緩存、計數器和發布訂閱。選擇Redis還是其他數據庫需根據具體需求和場景,Redis在高性能、低延遲應用中表現出色。

Redis在數據存儲和管理中扮演著關鍵角色,通過其多種數據結構和持久化機製成為現代應用的核心。 1)Redis支持字符串、列表、集合、有序集合和哈希表等數據結構,適用於緩存和復雜業務邏輯。 2)通過RDB和AOF兩種持久化方式,Redis確保數據的可靠存儲和快速恢復。

Redis是一種NoSQL數據庫,適用於大規模數據的高效存儲和訪問。 1.Redis是開源的內存數據結構存儲系統,支持多種數據結構。 2.它提供極快的讀寫速度,適合緩存、會話管理等。 3.Redis支持持久化,通過RDB和AOF方式確保數據安全。 4.使用示例包括基本的鍵值對操作和高級的集合去重功能。 5.常見錯誤包括連接問題、數據類型不匹配和內存溢出,需注意調試。 6.性能優化建議包括選擇合適的數據結構和設置內存淘汰策略。

Redis在現實世界中的應用包括:1.作為緩存系統加速數據庫查詢,2.存儲Web應用的會話數據,3.實現實時排行榜,4.作為消息隊列簡化消息傳遞。 Redis的多功能性和高性能使其在這些場景中大放異彩。

Redis脫穎而出是因為其高速、多功能性和豐富的數據結構。 1)Redis支持字符串、列表、集合、散列和有序集合等數據結構。 2)它通過內存存儲數據,支持RDB和AOF持久化。 3)從Redis6.0開始引入多線程處理I/O操作,提升了高並發場景下的性能。

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

SublimeText3 Linux新版
SublimeText3 Linux最新版

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能