我熟练应用ctrl c和ctrl v 开发curd代码好多年了。
mysql查询为什么会慢,关于这个问题,在实际开发经常会遇到,而面试中,也是个高频题。
遇到这种问题,我们一般也会想到是因为索引。
那除开索引之外,还有哪些因素会导致数据库查询变慢呢?
有哪些操作,可以提升mysql的查询能力呢?
今天这篇文章,我们就来聊聊会导致数据库查询变慢的场景有哪些,并给出原因和解决方案。
数据库查询流程
我们先来看下,一条查询语句下来,会经历哪些流程。
比如我们有一张数据库表
CREATE TABLE `user` ( `id` int(10) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键', `name` varchar(100) NOT NULL DEFAULT '' COMMENT '名字', `age` int(11) NOT NULL DEFAULT '0' COMMENT '年龄', `gender` int(8) NOT NULL DEFAULT '0' COMMENT '性别', PRIMARY KEY (`id`), KEY `idx_age` (`age`), KEY `idx_gender` (`gender`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
我们平常写的应用代码(go或C++之类的),这时候就叫客户端了。
客户端底层会带着账号密码,尝试向mysql建立一条TCP长链接。
mysql的连接管理模块会对这条连接进行管理。
建立连接后,客户端执行一条查询sql语句。 比如:
select * from user where gender = 1 and age = 100;
客户端会将sql语句通过网络连接给mysql。
mysql收到sql语句后,会在分析器中先判断下SQL语句有没有语法错误,比如select,如果少打一个l
,写成slect
,则会报错You have an error in your SQL syntax;
。这个报错对于我这样的手残党来说可以说是很熟悉了。
接下来是优化器,在这里会根据一定的规则选择该用什么索引。
之后,才是通过执行器去调用存储引擎的接口函数。
存储引擎类似于一个个组件,它们才是mysql真正获取一行行数据并返回数据的地方,存储引擎是可以替换更改的,既可以用不支持事务的MyISAM,也可以替换成支持事务的Innodb。这个可以在建表的时候指定。比如
CREATE TABLE `user` ( ... ) ENGINE=InnoDB;
现在最常用的是InnoDB。
我们就重点说这个。
InnoDB中,因为直接操作磁盘会比较慢,所以加了一层内存提提速,叫buffer pool,这里面,放了很多内存页,每一页16KB,有些内存页放的是数据库表里看到的那种一行行的数据,有些则是放的索引信息。
查询SQL到了InnoDB中。会根据前面优化器里计算得到的索引,去查询相应的索引页,如果不在buffer pool里则从磁盘里加载索引页。再通过索引页加速查询,得到数据页的具体位置。如果这些数据页不在buffer pool中,则从磁盘里加载进来。
这样我们就得到了我们想要的一行行数据。
最后将得到的数据结果返回给客户端。
慢查询分析
如果上面的流程比较慢的话,我们可以通过开启profiling
看到流程慢在哪。
mysql> set profiling=ON; Query OK, 0 rows affected, 1 warning (0.00 sec) mysql> show variables like 'profiling'; +---------------+-------+ | Variable_name | Value | +---------------+-------+ | profiling | ON | +---------------+-------+ 1 row in set (0.00 sec)
然后正常执行sql语句。
这些SQL语句的执行时间都会被记录下来,此时你想查看有哪些语句被记录下来了,可以执行 show profiles;
mysql> show profiles; +----------+------------+---------------------------------------------------+ | Query_ID | Duration | Query | +----------+------------+---------------------------------------------------+ | 1 | 0.06811025 | select * from user where age>=60 | | 2 | 0.00151375 | select * from user where gender = 2 and age = 80 | | 3 | 0.00230425 | select * from user where gender = 2 and age = 60 | | 4 | 0.00070400 | select * from user where gender = 2 and age = 100 | | 5 | 0.07797650 | select * from user where age!=60 | +----------+------------+---------------------------------------------------+ 5 rows in set, 1 warning (0.00 sec)
关注下上面的query_id
,比如select * from user where age>=60
对应的query_id是1,如果你想查看这条SQL语句的具体耗时,那么可以执行以下的命令。
mysql> show profile for query 1; +----------------------+----------+ | Status | Duration | +----------------------+----------+ | starting | 0.000074 | | checking permissions | 0.000010 | | Opening tables | 0.000034 | | init | 0.000032 | | System lock | 0.000027 | | optimizing | 0.000020 | | statistics | 0.000058 | | preparing | 0.000018 | | executing | 0.000013 | | Sending data | 0.067701 | | end | 0.000021 | | query end | 0.000015 | | closing tables | 0.000014 | | freeing items | 0.000047 | | cleaning up | 0.000027 | +----------------------+----------+ 15 rows in set, 1 warning (0.00 sec)
通过上面的各个项,大家就可以看到具体耗时在哪。比如从上面可以看出Sending data的耗时最大,这个是指执行器开始查询数据并将数据发送给客户端的耗时,因为我的这张表符合条件的数据有好几万条,所以这块耗时最大,也符合预期。
一般情况下,我们开发过程中,耗时大部分时候都在Sending data
阶段,而这一阶段里如果慢的话,最容易想到的还是索引相关的原因。
索引相關原因
索引相關的問題,一般能用explain指令幫助分析。透過它能看到用了哪些索引,大概會掃描多少行之類的資訊。
mysql會在優化器階段裡看下選擇哪個索引,查詢速度會更快。
一般主要考慮幾個因素,例如:
- 選擇這個索引大概要掃描多少行(rows)
- 為了把這些行取出來,需要讀多少個16kb的頁
- 走普通索引需要回表,主鍵索引則不需要,回表成本大不大?
回到show profile中提到的sql語句,我們使用explain select * from user where age>=60
分析一下。
上面的這條語句,使用的type
為ALL,意味著是全表掃描,possible_keys
是指可能用得到的索引,這裡可能使用到的索引是為age建立的普通索引,但實際上資料庫使用的索引是在key
那一列,是NULL
。也就是說這句sql不走索引,全表掃描。
這個是因為資料表裡,符合條件的資料行數(rows
)太多,如果使用age索引,那麼需要將它們從age索引中讀出來,並且age索引是普通索引,還需要回表找到對應的主鍵才能找到對應的資料頁。算下來不如直接走主鍵划算。於是最終選擇了全表掃描。
當然上面只是舉了個例子,實際上,mysql執行sql時,不用索引或用的索引不符合我們預期這件事經常發生,索引失效的場景有很多,例如用了不等號,隱式轉換等,這個相信大家背八股文的時候也背過不少了,我也不再贅述。
聊聊兩個生產中容易遇到的問題吧。
索引不符合預期
實際開發中有些情況比較特殊,例如有些資料庫表一開始資料量小,索引少,執行sql時,確實使用了符合你預期的索引。但隨時時間邊長,開發的人變多了,資料量也變大了,甚至還可能會加入一些其他重複多餘的索引,就有可能出現用著用著,用到了不符合你預期的其他索引了。從而導致查詢突然變慢。
這種問題,也好解決,可以透過force index
指定索引。例如
透過explain
可以看出,加了force index之後,sql就選用了idx_age這個索引了。
走了索引還是很慢
有些sql,用explain
指令看,明明是走索引的,但還是很慢。一般是兩種情況:
第一種是索引區分度太低,比如網頁全路徑的url鏈接,這拿來做索引,一眼看過去全都是同一個域名,如果前綴索引的長度建得不夠長,那這走索引跟走全表掃描似的,正確姿勢是盡量讓索引的區分度更高,例如網域去掉,只拿後面URI部分去做索引。
第二種是索引中配對到的資料太大,這時候需要關注的是explain裡的rows欄位了。
它是用來預估這個查詢語句需要查的行數的,它不一定完全準確,但可以體現個大概量級。
當它很大時,一般常見的是下面幾種情況。
- 如果这个字段具有唯一的属性,比如电话号码等,一般是不应该有大量重复的,那可能是你代码逻辑出现了大量重复插入的操作,你需要检查下代码逻辑,或者需要加个唯一索引限制下。
- 如果这个字段下的数据就是会很大,是否需要全部拿?如果不需要,加个
limit
限制下。如果确实要拿全部,那也不能一次性全拿,今天你数据量小,可能一次取一两万都没啥压力,万一哪天涨到了十万级别,那一次性取就有点吃不消了。你可能需要分批次取,具体操作是先用order by id
排序一下,拿到一批数据后取最大id
作为下次取数据的起始位置。
连接数过小
索引相关的原因我们聊完了,我们来聊聊,除了索引之外,还有哪些因素会限制我们的查询速度的。
我们可以看到,mysql的server层里有个连接管理,它的作用是管理客户端和mysql之间的长连接。
正常情况下,客户端与server层如果只有一条连接,那么在执行sql查询之后,只能阻塞等待结果返回,如果有大量查询同时并发请求,那么后面的请求都需要等待前面的请求执行完成后,才能开始执行。
因此很多时候我们的应用程序,比如go或java这些,会打印出sql执行了几分钟的日志,但实际上你把这条语句单独拎出来执行,却又是毫秒级别的。 这都是因为这些sql语句在等待前面的sql执行完成。
怎么解决呢?
如果我们能多建几条连接,那么请求就可以并发执行,后面的连接就不用等那么久了。
而连接数过小的问题,受数据库和客户端两侧同时限制。
数据库连接数过小
mysql的最大连接数默认是100
, 最大可以达到16384
。
可以通过设置mysql的max_connections
参数,更改数据库的最大连接数。
mysql> set global max_connections= 500; Query OK, 0 rows affected (0.00 sec) mysql> show variables like 'max_connections'; +-----------------+-------+ | Variable_name | Value | +-----------------+-------+ | max_connections | 500 | +-----------------+-------+ 1 row in set (0.00 sec)
上面的操作,就把最大连接数改成了500。
应用侧连接数过小
数据库连接大小是调整过了,但貌似问题还是没有变化?还是有很多sql执行达到了几分钟,甚至超时?
那有可能是因为你应用侧(go,java写的应用,也就是mysql的客户端)的连接数也过小。
应用侧与mysql底层的连接,是基于TCP协议的长链接,而TCP协议,需要经过三次握手和四次挥手来实现建连和释放。如果我每次执行sql都重新建立一个新的连接的话,那就要不断握手和挥手,这很耗时。所以一般会建立一个长连接池,连接用完之后,塞到连接池里,下次要执行sql的时候,再从里面捞一条连接出来用,非常环保。
我们一般写代码的时候,都会通过第三方的orm库来对数据库进行操作,而成熟的orm库,百分之一千万都会有个连接池。
而这个连接池,一般会有个大小。这个大小就控制了你的连接数最大值,如果说你的连接池太小,都还没有数据库的大,那调了数据库的最大连接数也没啥作用。
一般情况下,可以翻下你使用的orm库的文档,看下怎么设置这个连接池的大小,就几行代码的事情,改改就好。比如go语言里的gorm
里是这么设置的
func Init() { db, err := gorm.Open(mysql.Open(conn), config) sqlDB, err := db.DB() // SetMaxIdleConns 设置空闲连接池中连接的最大数量 sqlDB.SetMaxIdleConns(200) // SetMaxOpenConns 设置打开数据库连接的最大数量 sqlDB.SetMaxOpenConns(1000) }
buffer pool太小
连接数是上去了,速度也提升了。
曾经遇到过面试官会追问,有没有其他办法可以让速度更快呢?
那必须要眉头紧锁,假装思考,然后说:有的。
我们在前面的数据库查询流程里,提到了进了innodb之后,会有一层内存buffer pool,用于将磁盘数据页加载到内存页中,只要查询到buffer pool里有,就可以直接返回,否则就要走磁盘IO,那就慢了。
也就是说,如果我的buffer pool 越大,那我们能放的数据页就越多,相应的,sql查询时就更可能命中buffer pool,那查询速度自然就更快了。
可以通过下面的命令查询到buffer pool的大小,单位是Byte
。
mysql> show global variables like 'innodb_buffer_pool_size'; +-------------------------+-----------+ | Variable_name | Value | +-------------------------+-----------+ | innodb_buffer_pool_size | 134217728 | +-------------------------+-----------+ 1 row in set (0.01 sec)
也就是128Mb
。
如果想要调大一点。可以执行
mysql> set global innodb_buffer_pool_size = 536870912; Query OK, 0 rows affected (0.01 sec) mysql> show global variables like 'innodb_buffer_pool_size'; +-------------------------+-----------+ | Variable_name | Value | +-------------------------+-----------+ | innodb_buffer_pool_size | 536870912 | +-------------------------+-----------+ 1 row in set (0.01 sec)
这样就把buffer pool增大到512Mb了。
但是吧,如果buffer pool大小正常,只是别的原因导致的查询变慢,那改buffer pool毫无意义。
但问题又来了。
怎么知道buffer pool是不是太小了?
这个我们可以看buffer pool的缓存命中率。
通过 show status like 'Innodb_buffer_pool_%';
可以看到跟buffer pool有关的一些信息。
Innodb_buffer_pool_read_requests
表示读请求的次数。
Innodb_buffer_pool_reads
表示从物理磁盘中读取数据的请求次数。
所以buffer pool的命中率就可以这样得到:
buffer pool 命中率 = 1 - (Innodb_buffer_pool_reads/Innodb_buffer_pool_read_requests) * 100%
比如我上面截图里的就是,1 - (405/2278354) = 99.98%。可以说命中率非常高了。
一般情况下buffer pool命中率都在99%
以上,如果低于这个值,才需要考虑加大innodb buffer pool的大小。
当然,还可以把这个命中率做到监控里,这样半夜sql变慢了,早上上班还能定位到原因,就很舒服。
还有哪些骚操作?
前面提到的是在存储引擎层里加入了buffer pool用于缓存内存页,这样可以加速查询。
那同样的道理,server层也可以加个缓存,直接将第一次查询的结果缓存下来,这样下次查询就能立刻返回,听着挺美的。
按道理,如果命中缓存的话,确实是能为查询加速的。但这个功能限制很大,其中最大的问题是只要数据库表被更新过,表里面的所有缓存都会失效,数据表频繁的更新,就会带来频繁的缓存失效。所以这个功能只适合用于那些不怎么更新的数据表。
另外,这个功能在8.0版本
之后,就被干掉了。所以这功能用来聊聊天可以,没必要真的在生产中使用啊。
总结
- 数据查询过慢一般是索引问题,可能是因为选错索引,也可能是因为查询的行数太多。
- 客户端和数据库连接数过小,会限制sql的查询并发数,增大连接数可以提升速度。
- innodb里会有一层内存buffer pool用于提升查询速度,命中率一般>99%,如果低于这个值,可以考虑增大buffer pool的大小,这样也可以提升速度。
- 查询缓存(query cache)确实能为查询提速,但一般不建议打开,因为限制比较大,并且8.0以后的mysql里已经将这个功能干掉了。
最后
最近原创更文的阅读量稳步下跌,思前想后,夜里辗转反侧。
我有个不成熟的请求。
离开广东好长时间了,好久没人叫我靓仔了。
大家可以在评论区里,叫我一靓仔吗?
我这么善良质朴的愿望,能被满足吗?
如果实在叫不出口的话,能帮我点下右下角的点赞和在看吗?
【相关推荐:mysql视频教程】
以上是mysql查詢慢的因素除了索引,還有什麼?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

MySQL和SQLite的主要區別在於設計理念和使用場景:1.MySQL適用於大型應用和企業級解決方案,支持高性能和高並發;2.SQLite適合移動應用和桌面軟件,輕量級且易於嵌入。

MySQL中的索引是數據庫表中一列或多列的有序結構,用於加速數據檢索。 1)索引通過減少掃描數據量提升查詢速度。 2)B-Tree索引利用平衡樹結構,適合範圍查詢和排序。 3)創建索引使用CREATEINDEX語句,如CREATEINDEXidx_customer_idONorders(customer_id)。 4)複合索引可優化多列查詢,如CREATEINDEXidx_customer_orderONorders(customer_id,order_date)。 5)使用EXPLAIN分析查詢計劃,避

在MySQL中使用事務可以確保數據一致性。 1)通過STARTTRANSACTION開始事務,執行SQL操作後用COMMIT提交或ROLLBACK回滾。 2)使用SAVEPOINT可以設置保存點,允許部分回滾。 3)性能優化建議包括縮短事務時間、避免大規模查詢和合理使用隔離級別。

選擇PostgreSQL而非MySQL的場景包括:1)需要復雜查詢和高級SQL功能,2)要求嚴格的數據完整性和ACID遵從性,3)需要高級空間功能,4)處理大數據集時需要高性能。 PostgreSQL在這些方面表現出色,適合需要復雜數據處理和高數據完整性的項目。

MySQL數據庫的安全可以通過以下措施實現:1.用戶權限管理:通過CREATEUSER和GRANT命令嚴格控制訪問權限。 2.加密傳輸:配置SSL/TLS確保數據傳輸安全。 3.數據庫備份和恢復:使用mysqldump或mysqlpump定期備份數據。 4.高級安全策略:使用防火牆限制訪問,並啟用審計日誌記錄操作。 5.性能優化與最佳實踐:通過索引和查詢優化以及定期維護兼顧安全和性能。

如何有效監控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。 1.使用mysqladmin查看連接數。 2.用SHOWGLOBALSTATUS查看查詢數。 3.PMM提供詳細性能數據和圖形化界面。 4.MySQLEnterpriseMonitor提供豐富的監控功能和報警機制。

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显著差异,选择时需考虑项目规模和未来扩展性。

在需要高可用性、高級安全性和良好集成性的企業級應用場景下,應選擇SQLServer而不是MySQL。 1)SQLServer提供企業級功能,如高可用性和高級安全性。 2)它與微軟生態系統如VisualStudio和PowerBI緊密集成。 3)SQLServer在性能優化方面表現出色,支持內存優化表和列存儲索引。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

記事本++7.3.1
好用且免費的程式碼編輯器

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),