這篇文章為大家帶來了關於python的相關知識,其中主要整理了二分查找演算法的相關問題,包括了演算法描述、演算法分析、演算法思路等等內容,以下一起來看一下,希望對大家有幫助。
推薦學習:python影片教學
#1.演算法描述
二分法是一種效率比較高的搜尋方法
回憶之前做過的猜數字的小遊戲,預先給定一個小於100的正整數x,讓你猜猜測過程中給予大小判斷的提示,問你怎樣快速猜出來?
我們之前做的遊戲給定的是10次機會,如果我們學會.二分查找法以後,不管數字是多少,最多只需要7次就能猜到數字。
2. 演算法分析
1、必須是有順序的序列。
2、對資料量大小有要求。
資料量太小不適合二分查找,與直接遍歷相比效率提升不明顯。
資料量太大也不適合用二分查找,因為陣列需要連續的儲存空間,若資料量太大,往往找不到儲存如此大規模資料的連續記憶體空間。 .
3. 演算法思路
4.程式碼實作純演算法實作 4.程式碼實作純演算法實作假設有一個有序列表如下:
## 請問數字11是否在此清單中,如果在它的索引值為多少?
#實作程式碼:
arr_list = [5, 7, 11, 22, 27, 33, 39, 52, 58]# 需要查找的数字seek_number = 11# 保存一共查找了几次count = 0# 列表左侧索引left = 0# 列表右侧索引right = len(arr_list) - 1# 当左侧索引小于等于右侧索引时while left arr_list[middle]: # 左侧索引为中间位置索引+1 left = middle + 1 # 如果查找的数字小于中间位置的数字时 elif seek_number <h2 id="執行結果">執行結果:</h2><blockquote><p></p></blockquote>遞歸法實作<p></p><p>在迴圈中定義了一個變數count,如果第一次循環後count沒有變化,就表示輸入的是有序序列,這時我們直接return退出循環,這時候的時間複雜度為O(n)</p><p><img src="/static/imghwm/default1.png" data-src="https://img.php.cn/upload/article/000/000/067/719dc56ca48395be26696a233ba5e483-5.png?x-oss-process=image/resize,p_40" class="lazy" alt="Python詳細解析之二分查找演算法">實現程式碼:</p> <pre class="brush:php;toolbar:false">arr_list = [5, 7, 11, 22, 27, 33, 39, 52, 58]def binary_search(seek_number, left, right): if left arr_list[middle]: left = middle + 1 else: return middle # 进行递归调用 return binary_search(seek_number, left, right) # 当左侧索引大于右侧索引时,说明没有找到 else: return -1# 查找的数字seek_number = 11# 列表左侧索引left = 0# 列表右侧索引right = len(arr_list) - 1print("查找的数字:%s,索引为:%s" % (seek_number, binary_search(seek_number, left, right)))#######推薦學習:###python影片教學#######
以上是Python詳細解析之二分查找演算法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python在現實世界中的應用包括數據分析、Web開發、人工智能和自動化。 1)在數據分析中,Python使用Pandas和Matplotlib處理和可視化數據。 2)Web開發中,Django和Flask框架簡化了Web應用的創建。 3)人工智能領域,TensorFlow和PyTorch用於構建和訓練模型。 4)自動化方面,Python腳本可用於復製文件等任務。

Python在數據科學、Web開發和自動化腳本領域廣泛應用。 1)在數據科學中,Python通過NumPy、Pandas等庫簡化數據處理和分析。 2)在Web開發中,Django和Flask框架使開發者能快速構建應用。 3)在自動化腳本中,Python的簡潔性和標準庫使其成為理想選擇。

Python的靈活性體現在多範式支持和動態類型系統,易用性則源於語法簡潔和豐富的標準庫。 1.靈活性:支持面向對象、函數式和過程式編程,動態類型系統提高開發效率。 2.易用性:語法接近自然語言,標準庫涵蓋廣泛功能,簡化開發過程。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。

可以,在每天花費兩個小時的時間內學會Python。 1.制定合理的學習計劃,2.選擇合適的學習資源,3.通過實踐鞏固所學知識,這些步驟能幫助你在短時間內掌握Python。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

記事本++7.3.1
好用且免費的程式碼編輯器

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

WebStorm Mac版
好用的JavaScript開發工具

SublimeText3 Linux新版
SublimeText3 Linux最新版