本篇文章為大家帶來了關於java的相關知識,其中主要介紹了關於平衡二叉樹(AVL樹)的相關知識,AVL樹本質上是帶了平衡功能的二叉找樹,下面一起來看一下,希望對大家有幫助。
推薦學習:《java影片教學》
搜尋二元樹有著極高的搜尋效率,但是搜尋二元樹會出現以下極端情況:
這樣的二元樹搜尋效率甚至比鍊錶還低。在搜尋二元樹基礎上出現的平衡二元樹(AVL樹)就解決了這樣的問題。當平衡二元樹(AVL樹)的某個節點左右子樹高度差的絕對值大於1時,就會透過旋轉操作來減少它們的高度差。
AVL樹本質上還是一棵二元搜尋樹,它的特點是:
二元搜尋樹
。 高度之差的絕對值(平衡因子)最多為1
。也就是說,AVL樹,本質上是帶了平衡功能
的二元查找樹(二元排序樹,二元搜尋樹)。 左旋
和右旋
的操作使二元樹再次達到平衡狀態。 平衡因子(balanceFactor)
高度之差
。 -1,0和1。
下面是AVL樹需要的簡單方法與屬性:
public class AVLTree <e>>{ class Node{ E value; Node left; Node right; int height; public Node(){} public Node(E value){ this.value = value; height = 1; left = null; right = null; } public void display(){ System.out.print(this.value + " "); } } Node root; int size; public int size(){ return size; } public int getHeight(Node node) { if(node == null) return 0; return node.height; } //获取平衡因子(左右子树的高度差,大小为1或者0是平衡的,大小大于1不平衡) public int getBalanceFactor(){ return getBalanceFactor(root); } public int getBalanceFactor(Node node){ if(node == null) return 0; return getHeight(node.left) - getHeight(node.right); } //判断一个树是否是一个平衡二叉树 public boolean isBalance(Node node){ if(node == null) return true; int balanceFactor = Math.abs(getBalanceFactor(node.left) - getBalanceFactor(node.right)); if(balanceFactor > 1) return false; return isBalance(node.left) && isBalance(node.right); } public boolean isBalance(){ return isBalance(root); } //中序遍历树 private void inPrevOrder(Node root){ if(root == null) return; inPrevOrder(root.left); root.display(); inPrevOrder(root.right); } public void inPrevOrder(){ System.out.print("中序遍历:"); inPrevOrder(root); }}</e>
往一個樹右子樹的右子樹上插入一個節點,導致二元樹變得不在平衡,如下圖,往平衡二元樹中插入5,導致這個樹變得不再平衡,此時需要左旋操作,如下:
程式碼如下:
//左旋,并且返回新的根节点 public Node leftRotate(Node node){ System.out.println("leftRotate"); Node cur = node.right; node.right = cur.left; cur.left = node; //跟新node和cur的高度 node.height = Math.max(getHeight(node.left),getHeight(node.right)) + 1; cur.height = Math.max(getHeight(cur.left),getHeight(cur.right)) + 1; return cur; }
在一個AVL樹左子樹的左子樹上插入節點,導致二元樹變得不在平衡,如下圖,往平衡二元樹中插入2,導致這個樹變得不再平衡,此時需要左旋操作,如下:
程式碼如下:
//右旋,并且返回新的根节点 public Node rightRotate(Node node){ System.out.println("rightRotate"); Node cur = node.left; node.left = cur.right; cur.right = node; //跟新node和cur的高度 node.height = Math.max(getHeight(node.left),getHeight(node.right)) + 1; cur.height = Math.max(getHeight(cur.left),getHeight(cur.right)) + 1; return cur; }
往AVL樹左子樹的右子樹
上插入一個節點,導致該樹不再平衡,需要先對左子樹進行左旋
,再對整棵樹右旋
,如下圖所示,插入節點為5.
在AVL樹右子樹的左子樹
上插入一個節點,導致該樹不再平衡,需要先對右子樹進行右旋
,再對整棵樹左旋
,如下圖所示,插入節點為2.
//添加元素 public void add(E e){ root = add(root,e); } public Node add(Node node, E value) { if (node == null) { size++; return new Node(value); } if (value.compareTo(node.value) > 0) { node.right = add(node.right, value); } else if (value.compareTo(node.value) 1 && getBalanceFactor(node.left) >= 0) { return rightRotate(node); } //该子树不平衡且新插入节点(导致不平衡的节点)在右子树子树的右子树上,此时需要进行左旋 else if (balanceFactor 1 && getBalanceFactor(node.left) 0 //该子树不平衡且新插入节点(导致不平衡的节点)在右子树的左子树上,此时需要先对右子树右旋,再整个树左旋 else if(balanceFactor 0) { node.right = rightRotate(node.right); return leftRotate(node); } return node; }
//删除节点 public E remove(E value){ root = remove(root,value); if(root == null){ return null; } return root.value; } public Node remove(Node node, E value){ Node retNode = null; if(node == null) return retNode; if(value.compareTo(node.value) > 0){ node.right = remove(node.right,value); retNode = node; } else if(value.compareTo(node.value) 1 && getBalanceFactor(retNode.left) >= 0) { return rightRotate(retNode); } //该子树不平衡且新插入节点(导致不平衡的节点)在右子树子树的右子树上,此时需要进行左旋 else if (balanceFactor 1 && getBalanceFactor(retNode.left) 0) { retNode.right = rightRotate(retNode.right); return leftRotate(retNode); } return retNode; }
推薦學習:《java影片教學》
以上是Java資料結構之AVL樹詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!