首頁  >  文章  >  12306搶票,極限並發帶來的思考!

12306搶票,極限並發帶來的思考!

藏色散人
藏色散人原創
2022-05-13 10:05:314165瀏覽

12306搶票,極限並發帶來的思考?

每到假日期間,一二線城市返鄉、外出遊玩的人們幾乎都面臨著一個問題:搶火車票!雖然現在大多數情況下都能訂到票,但是放票瞬間即無票的場景,相信大家都深有體會。尤其是春節期間,大家不僅使用12306,還會考慮「智行」和其他的搶票軟體,全國上下幾億人在這段時間都在搶票。 「12306服務」承受著這個世界上任何秒殺系統都無法超越的QPS,上百萬的並發再正常不過了!筆者專門研究了一下「12306」的服務端架構,學習到了其係統設計上很多亮點,在這裡和大家分享一下並模擬一個例子:如何在100萬人同時搶1萬張火車票時,系統提供正常、穩定的服務。 github程式碼位址

相關推薦:《千萬級資料並發解決方案(理論實戰)

1. 大型高並發系統架構

高並發的系統架構都會採用分散式叢集部署,服務上層有著層層負載平衡,並提供各種容災手段(雙火機房、節點容錯、伺服器災備等)保證系統的高可用,流量也會根據不同的負載能力和配置策略均衡到不同的伺服器上。下邊是一個簡單的示意圖:

12306搶票,極限並發帶來的思考!

1.1 負載平衡簡介

上圖中描述了使用者請求到伺服器經歷了三層的負載平衡,下邊分別簡單介紹一下這三種負載平衡:

  • OSPF(開放式最短連結優先)是內部網關協定(Interior Gateway Protocol,簡稱IGP) 。 OSPF透過路由器之間通告網路介面的狀態來建立連結狀態資料庫,產生最短路徑樹,OSPF會自動計算路由介面上的Cost值,但也可以透過手動指定該介面的Cost值,手動指定的優先於自動計算的值。 OSPF計算的Cost,同樣是和介面頻寬成反比,頻寬越高,Cost值越小。到達目標相同Cost值的路徑,可以執行負載平衡,最多6條連結同時執行負載平衡。

  • LVS (Linux VirtualServer),它是一種叢集(Cluster)技術,採用IP負載平衡技術和基於內容請求分發技術。調度器具有很好的吞吐率,將請求均衡地轉移到不同的伺服器上執行,且調度器自動屏蔽掉伺服器的故障,從而將一組伺服器構成一個高效能的、高可用的虛擬伺服器。

  • Nginx想必大家都很熟悉了,是一款非常高性能的http代理/反向代理伺服器,服務開發中也經常使用它來做負載平衡。 Nginx實現負載平衡的方式主要有三種:輪詢、加權輪詢、ip hash輪詢,以下我們就針對Nginx的加權輪詢做專門的設定和測試

1.2 Nginx加權輪詢的示範

Nginx實現負載平衡透過upstream模組實現,其中加權輪詢的配置是可以給相關的服務加上一個權重值,配置的時候可能根據伺服器的效能、負載能力設定對應的負載。下面是一個加權輪詢負載的配置,我將在本地的監聽3001-3004端口,分別配置1,2,3,4的權重:

#配置负载均衡
    upstream load_rule {
       server 127.0.0.1:3001 weight=1;
       server 127.0.0.1:3002 weight=2;
       server 127.0.0.1:3003 weight=3;
       server 127.0.0.1:3004 weight=4;
    }
    ...
    server {
    listen       80;
    server_name  load_balance.com www.load_balance.com;
    location / {
       proxy_pass http://load_rule;
    }
}

複製代碼我在本地/etc/hosts目錄下配置了www.load_balance.com的虛擬網域位址,接下來使用Go語言開啟四個http埠監聽服務,以下是監聽在3001埠的Go程式,其他幾個只需要修改埠即可:

package main

import (
"net/http"
"os"
"strings"
)

func main() {
http.HandleFunc("/buy/ticket", handleReq)
http.ListenAndServe(":3001", nil)
}

//处理请求函数,根据请求将响应结果信息写入日志
func handleReq(w http.ResponseWriter, r *http.Request) {
failedMsg :=  "handle in port:"
writeLog(failedMsg, "./stat.log")
}

//写入日志
func writeLog(msg string, logPath string) {
fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
defer fd.Close()
content := strings.Join([]string{msg, "\r\n"}, "3001")
buf := []byte(content)
fd.Write(buf)
}

我將請求的連接埠日誌資訊寫到了./stat.log檔案當中,然後使用ab壓測工具做壓測:

ab -n 1000 -c 100 http://www.load_balance.com/buy/ticket

統計日誌中的結果,3001-3004連接埠分別得到了100、200、300、400的請求量,這和我在nginx中配置的權重佔比很好的吻合在了一起,並且負載後的流量非常的均勻、隨機。具體的實作大家可以參考nginx的upsteam模組實作原始碼,這裡推薦一篇文章:Nginx 中upstream 機制的負載平衡

2.秒殺搶購系統選型

#回到我們最初提到的問題:火車票秒殺系統如何在高並發情況下提供正常、穩定的服務呢?

從上面的介紹我們知道用戶秒殺流量通過層層的負載平衡,均勻到了不同的伺服器上,即使如此,叢集中的單機所承受的QPS也是非常高的。如何將單機效能優化到極致呢?要解決這個問題,我們就要想明白一件事:

通常訂票系統要處理產生訂單、減扣庫存、用戶支付這三個基本的階段,我們系統要做的事情是要保證火車票訂單不超賣、不少賣,每張售賣的車票都必須支付才有效,也要確保系統承受極高的並發。這三個階段的先後順序改怎麼分配才更加合理呢?我們來分析一下:

2.1 下單減庫存

當用戶並發請求到達服務端時,首先建立訂單,然後扣除庫存,等待用戶付款。這種順序是我們一般人首先會想到的解決方案,這種情況下也能保證訂單不會超賣,因為創建訂單之後就會減庫存,這是一個原子操作。但是這樣也會產生一些問題,第一就是在極限並發情況下,任何一個內存操作的細節都至關影響性能,尤其像創建訂單這種邏輯,一般都需要存儲到磁碟數據庫的,對數據庫的壓力是可想而知的;第二是如果用戶存在惡意下單的情況,只下單不支付這樣庫存就會變少,會少賣很多訂單,雖然服務端可以限制IP和用戶的購買訂單數量,這也不算是個好方法。

12306搶票,極限並發帶來的思考!

2.2 支付減庫存

如果等待用戶支付了訂單在減庫存,第一感覺就是不會少賣。但是這是並發架構的大忌,因為在極限並發情況下,用戶可能會創建很多訂單,當庫存減為零的時候很多用戶發現搶到的訂單支付不了了,這也就是所謂的“超賣” 。也不能避免並發操作資料庫磁碟IO

12306搶票,極限並發帶來的思考!

2.3 預扣庫存

從上邊兩種方案的考慮,我們可以得出結論:只要建立訂單,就要頻繁操作資料庫IO。那麼有沒有一種不需要直接操作資料庫IO的方案呢,這就是預扣庫存。先扣除了庫存,保證不超賣,然後異步生成用戶訂單,這樣響應給用戶的速度就會快很多;那麼怎麼保證不少賣呢?用戶拿到了訂單,不付款怎麼辦?我們都知道現在訂單都有有效期,比如說用戶五分鐘內不支付,訂單就失效了,訂單一旦失效,就會加入新的庫存,這也是現在很多網上零售企業保證商品不少賣採用的方案。訂單的生成是異步的,一般都會放到MQ、kafka這樣的即時消費隊列中處理,訂單量比較少的情況下,生成訂單非常快,用戶幾乎不用排隊。

12306搶票,極限並發帶來的思考!

3. 扣庫存的藝術

從上面的分析可知,顯然預扣庫存的方案最合理。我們進一步分析扣庫存的細節,這裡還有很大的優化空間,庫存存在哪裡?怎麼保證高並發下,正確的扣庫存,還能快速的響應用戶請求?

在單機低併發情況下,我們實現扣庫存通常是這樣的:

12306搶票,極限並發帶來的思考!

#為了保證扣庫存和生成訂單的原子性,需要採用事務處理,然後取庫存判斷、減庫存,最後提交事務,整個流程有很多IO,對資料庫的操作又是阻塞的。這種方式根本不適合高併發的秒殺系統。

接下來我們將單機扣庫存的方案做最佳化:本地扣庫存。我們把一定的庫存量分配到本地機器,直接在記憶體中減去庫存,然後按照先前的邏輯非同步建立訂單。改進過之後的單機系統是這樣的:

12306搶票,極限並發帶來的思考!

#

这样就避免了对数据库频繁的IO操作,只在内存中做运算,极大的提高了单机抗并发的能力。但是百万的用户请求量单机是无论如何也抗不住的,虽然nginx处理网络请求使用epoll模型,c10k的问题在业界早已得到了解决。但是linux系统下,一切资源皆文件,网络请求也是这样,大量的文件描述符会使操作系统瞬间失去响应。上面我们提到了nginx的加权均衡策略,我们不妨假设将100W的用户请求量平均均衡到100台服务器上,这样单机所承受的并发量就小了很多。然后我们每台机器本地库存100张火车票,100台服务器上的总库存还是1万,这样保证了库存订单不超卖,下面是我们描述的集群架构:

12306搶票,極限並發帶來的思考!

问题接踵而至,在高并发情况下,现在我们还无法保证系统的高可用,假如这100台服务器上有两三台机器因为扛不住并发的流量或者其他的原因宕机了。那么这些服务器上的订单就卖不出去了,这就造成了订单的少卖。要解决这个问题,我们需要对总订单量做统一的管理,这就是接下来的容错方案。服务器不仅要在本地减库存,另外要远程统一减库存。有了远程统一减库存的操作,我们就可以根据机器负载情况,为每台机器分配一些多余的“buffer库存”用来防止机器中有机器宕机的情况。我们结合下面架构图具体分析一下:

12306搶票,極限並發帶來的思考!

我们采用Redis存储统一库存,因为Redis的性能非常高,号称单机QPS能抗10W的并发。在本地减库存以后,如果本地有订单,我们再去请求redis远程减库存,本地减库存和远程减库存都成功了,才返回给用户抢票成功的提示,这样也能有效的保证订单不会超卖。当机器中有机器宕机时,因为每个机器上有预留的buffer余票,所以宕机机器上的余票依然能够在其他机器上得到弥补,保证了不少卖。buffer余票设置多少合适呢,理论上buffer设置的越多,系统容忍宕机的机器数量就越多,但是buffer设置的太大也会对redis造成一定的影响。虽然redis内存数据库抗并发能力非常高,请求依然会走一次网络IO,其实抢票过程中对redis的请求次数是本地库存和buffer库存的总量,因为当本地库存不足时,系统直接返回用户“已售罄”的信息提示,就不会再走统一扣库存的逻辑,这在一定程度上也避免了巨大的网络请求量把redis压跨,所以buffer值设置多少,需要架构师对系统的负载能力做认真的考量。

4. 代码演示

Go语言原生为并发设计,我采用go语言给大家演示一下单机抢票的具体流程。

4.1 初始化工作

go包中的init函数先于main函数执行,在这个阶段主要做一些准备性工作。我们系统需要做的准备工作有:初始化本地库存、初始化远程redis存储统一库存的hash键值、初始化redis连接池;另外还需要初始化一个大小为1的int类型chan,目的是实现分布式锁的功能,也可以直接使用读写锁或者使用redis等其他的方式避免资源竞争,但使用channel更加高效,这就是go语言的哲学:不要通过共享内存来通信,而要通过通信来共享内存。redis库使用的是redigo,下面是代码实现:

...
//localSpike包结构体定义
package localSpike

type LocalSpike struct {
LocalInStock     int64
LocalSalesVolume int64
}
...
//remoteSpike对hash结构的定义和redis连接池
package remoteSpike
//远程订单存储健值
type RemoteSpikeKeys struct {
SpikeOrderHashKey string //redis中秒杀订单hash结构key
TotalInventoryKey string //hash结构中总订单库存key
QuantityOfOrderKey string //hash结构中已有订单数量key
}

//初始化redis连接池
func NewPool() *redis.Pool {
return &redis.Pool{
MaxIdle:   10000,
MaxActive: 12000, // max number of connections
Dial: func() (redis.Conn, error) {
c, err := redis.Dial("tcp", ":6379")
if err != nil {
panic(err.Error())
}
return c, err
},
}
}
...
func init() {
localSpike = localSpike2.LocalSpike{
LocalInStock:     150,
LocalSalesVolume: 0,
}
remoteSpike = remoteSpike2.RemoteSpikeKeys{
SpikeOrderHashKey:  "ticket_hash_key",
TotalInventoryKey:  "ticket_total_nums",
QuantityOfOrderKey: "ticket_sold_nums",
}
redisPool = remoteSpike2.NewPool()
done = make(chan int, 1)
done <- 1
}

4.2 本地扣库存和统一扣库存

本地扣库存逻辑非常简单,用户请求过来,添加销量,然后对比销量是否大于本地库存,返回bool值:

package localSpike
//本地扣库存,返回bool值
func (spike *LocalSpike) LocalDeductionStock() bool{
spike.LocalSalesVolume = spike.LocalSalesVolume + 1
return spike.LocalSalesVolume < spike.LocalInStock
}

注意这里对共享数据LocalSalesVolume的操作是要使用锁来实现的,但是因为本地扣库存和统一扣库存是一个原子性操作,所以在最上层使用channel来实现,这块后边会讲。统一扣库存操作redis,因为redis是单线程的,而我们要实现从中取数据,写数据并计算一些列步骤,我们要配合lua脚本打包命令,保证操作的原子性:

package remoteSpike
......
const LuaScript = `
        local ticket_key = KEYS[1]
        local ticket_total_key = ARGV[1]
        local ticket_sold_key = ARGV[2]
        local ticket_total_nums = tonumber(redis.call(&#39;HGET&#39;, ticket_key, ticket_total_key))
        local ticket_sold_nums = tonumber(redis.call(&#39;HGET&#39;, ticket_key, ticket_sold_key))
-- 查看是否还有余票,增加订单数量,返回结果值
       if(ticket_total_nums >= ticket_sold_nums) then
            return redis.call(&#39;HINCRBY&#39;, ticket_key, ticket_sold_key, 1)
        end
        return 0
`
//远端统一扣库存
func (RemoteSpikeKeys *RemoteSpikeKeys) RemoteDeductionStock(conn redis.Conn) bool {
lua := redis.NewScript(1, LuaScript)
result, err := redis.Int(lua.Do(conn, RemoteSpikeKeys.SpikeOrderHashKey, RemoteSpikeKeys.TotalInventoryKey, RemoteSpikeKeys.QuantityOfOrderKey))
if err != nil {
return false
}
return result != 0
}

我们使用hash结构存储总库存和总销量的信息,用户请求过来时,判断总销量是否大于库存,然后返回相关的bool值。在启动服务之前,我们需要初始化redis的初始库存信息:

 hmset ticket_hash_key "ticket_total_nums" 10000 "ticket_sold_nums" 0

4.3 响应用户信息

我们开启一个http服务,监听在一个端口上:

package main
...
func main() {
http.HandleFunc("/buy/ticket", handleReq)
http.ListenAndServe(":3005", nil)
}

上面我们做完了所有的初始化工作,接下来handleReq的逻辑非常清晰,判断是否抢票成功,返回给用户信息就可以了。

package main
//处理请求函数,根据请求将响应结果信息写入日志
func handleReq(w http.ResponseWriter, r *http.Request) {
redisConn := redisPool.Get()
LogMsg := ""
<-done
//全局读写锁
if localSpike.LocalDeductionStock() && remoteSpike.RemoteDeductionStock(redisConn) {
util.RespJson(w, 1,  "抢票成功", nil)
LogMsg = LogMsg + "result:1,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10)
} else {
util.RespJson(w, -1, "已售罄", nil)
LogMsg = LogMsg + "result:0,localSales:" + strconv.FormatInt(localSpike.LocalSalesVolume, 10)
}
done <- 1

//将抢票状态写入到log中
writeLog(LogMsg, "./stat.log")
}

func writeLog(msg string, logPath string) {
fd, _ := os.OpenFile(logPath, os.O_RDWR|os.O_CREATE|os.O_APPEND, 0644)
defer fd.Close()
content := strings.Join([]string{msg, "\r\n"}, "")
buf := []byte(content)
fd.Write(buf)
}

前边提到我们扣库存时要考虑竞态条件,我们这里是使用channel避免并发的读写,保证了请求的高效顺序执行。我们将接口的返回信息写入到了./stat.log文件方便做压测统计。

4.4 单机服务压测

开启服务,我们使用ab压测工具进行测试:

ab -n 10000 -c 100 http://127.0.0.1:3005/buy/ticket

下面是我本地低配mac的压测信息

This is ApacheBench, Version 2.3 <$Revision: 1826891 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking 127.0.0.1 (be patient)
Completed 1000 requests
Completed 2000 requests
Completed 3000 requests
Completed 4000 requests
Completed 5000 requests
Completed 6000 requests
Completed 7000 requests
Completed 8000 requests
Completed 9000 requests
Completed 10000 requests
Finished 10000 requests


Server Software:
Server Hostname:        127.0.0.1
Server Port:            3005

Document Path:          /buy/ticket
Document Length:        29 bytes

Concurrency Level:      100
Time taken for tests:   2.339 seconds
Complete requests:      10000
Failed requests:        0
Total transferred:      1370000 bytes
HTML transferred:       290000 bytes
Requests per second:    4275.96 [#/sec] (mean)
Time per request:       23.387 [ms] (mean)
Time per request:       0.234 [ms] (mean, across all concurrent requests)
Transfer rate:          572.08 [Kbytes/sec] received

Connection Times (ms)
              min  mean[+/-sd] median   max
Connect:        0    8  14.7      6     223
Processing:     2   15  17.6     11     232
Waiting:        1   11  13.5      8     225
Total:          7   23  22.8     18     239

Percentage of the requests served within a certain time (ms)
  50%     18
  66%     24
  75%     26
  80%     28
  90%     33
  95%     39
  98%     45
  99%     54
 100%    239 (longest request)

根据指标显示,我单机每秒就能处理4000+的请求,正常服务器都是多核配置,处理1W+的请求根本没有问题。而且查看日志发现整个服务过程中,请求都很正常,流量均匀,redis也很正常:

//stat.log
...
result:1,localSales:145
result:1,localSales:146
result:1,localSales:147
result:1,localSales:148
result:1,localSales:149
result:1,localSales:150
result:0,localSales:151
result:0,localSales:152
result:0,localSales:153
result:0,localSales:154
result:0,localSales:156
...

5.总结回顾

总体来说,秒杀系统是非常复杂的。我们这里只是简单介绍模拟了一下单机如何优化到高性能,集群如何避免单点故障,保证订单不超卖、不少卖的一些策略,完整的订单系统还有订单进度的查看,每台服务器上都有一个任务,定时的从总库存同步余票和库存信息展示给用户,还有用户在订单有效期内不支付,释放订单,补充到库存等等。

我们实现了高并发抢票的核心逻辑,可以说系统设计的非常的巧妙,巧妙的避开了对DB数据库IO的操作,对Redis网络IO的高并发请求,几乎所有的计算都是在内存中完成的,而且有效的保证了不超卖、不少卖,还能够容忍部分机器的宕机。我觉得其中有两点特别值得学习总结:

  • 负载均衡,分而治之。通过负载均衡,将不同的流量划分到不同的机器上,每台机器处理好自己的请求,将自己的性能发挥到极致,这样系统的整体也就能承受极高的并发了,就像工作的的一个团队,每个人都将自己的价值发挥到了极致,团队成长自然是很大的。

  • 合理的使用并发和异步。自epoll网络架构模型解决了c10k问题以来,异步越来被服务端开发人员所接受,能够用异步来做的工作,就用异步来做,在功能拆解上能达到意想不到的效果,这点在nginx、node.js、redis上都能体现,他们处理网络请求使用的epoll模型,用实践告诉了我们单线程依然可以发挥强大的威力。服务器已经进入了多核时代,go语言这种天生为并发而生的语言,完美的发挥了服务器多核优势,很多可以并发处理的任务都可以使用并发来解决,比如go处理http请求时每个请求都会在一个goroutine中执行,总之:怎样合理的压榨CPU,让其发挥出应有的价值,是我们一直需要探索学习的方向。

原文链接:https://juejin.cn/post/6844903949632274445

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn