搜尋
首頁資料庫mysql教程你值得了解的15個Mysql索引失效場景(帶你快速避坑)

這篇文章總結分享15個Mysql索引失效場景,讓大家可避坑踩雷,希望能夠給大家幫忙!

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

無論你是技術大佬,還是剛入行的小白,時不時都會踩到Mysql資料庫不走索引的坑。常見的現象就是:明明在欄位上新增了索引,但卻並未生效。

前幾天就遇到一個稍微特殊的場景,同一條SQL語句,在某些參數下生效,在某些參數下不生效,這是為什麼呢?

另外,無論是面試或是日常,Mysql索引失效的通常情況都應該了解和學習。

為了方便學習和記憶,這篇文件將常見的15種不走索引情況進行匯總,並以實例展示,幫助大家更好地避免踩坑。建議收藏,以備不時之需。

資料庫及索引準備

建立表格結構

為了逐項驗證索引的使用情況,我們先準備一張表t_user:

CREATE TABLE `t_user` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT 'ID',
  `id_no` varchar(18) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin DEFAULT NULL COMMENT '身份编号',
  `username` varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin DEFAULT NULL COMMENT '用户名',
  `age` int(11) DEFAULT NULL COMMENT '年龄',
  `create_time` datetime DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  PRIMARY KEY (`id`),
  KEY `union_idx` (`id_no`,`username`,`age`),
  KEY `create_time_idx` (`create_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;

在上述表格結構中有三個索引:

  • id:為資料庫主鍵;
  • union_idx:為id_no、username、age構成的聯合索引;
  • create_time_idx:是由create_time構成的普通索引;

#初始化資料

初始化資料分成兩部分:基礎資料和批次匯入資料。

基礎數據insert了4條數據,其中第4條數據的創建時間為未來的時間,用於後續特殊場景的驗證:

INSERT INTO `t_user` (`id`, `id_no`, `username`, `age`, `create_time`) VALUES (null, '1001', 'Tom1', 11, '2022-02-27 09:04:23');
INSERT INTO `t_user` (`id`, `id_no`, `username`, `age`, `create_time`) VALUES (null, '1002', 'Tom2', 12, '2022-02-26 09:04:23');
INSERT INTO `t_user` (`id`, `id_no`, `username`, `age`, `create_time`) VALUES (null, '1003', 'Tom3', 13, '2022-02-25 09:04:23');
INSERT INTO `t_user` (`id`, `id_no`, `username`, `age`, `create_time`) VALUES (null, '1004', 'Tom4', 14, '2023-02-25 09:04:23');

除了基礎數據,還有一條存儲過程及其調用的SQL,方便批量插入數據,用來驗證數據比較多的場景:

-- 删除历史存储过程
DROP PROCEDURE IF EXISTS `insert_t_user`

-- 创建存储过程
delimiter $

CREATE PROCEDURE insert_t_user(IN limit_num int)
BEGIN
  DECLARE i INT DEFAULT 10;
    DECLARE id_no varchar(18) ;
    DECLARE username varchar(32) ;
    DECLARE age TINYINT DEFAULT 1;
    WHILE i < limit_num DO
        SET id_no = CONCAT("NO", i);
        SET username = CONCAT("Tom",i);
        SET age = FLOOR(10 + RAND()*2);
        INSERT INTO `t_user` VALUES (NULL, id_no, username, age, NOW());
        SET i = i + 1;
    END WHILE;

END $
-- 调用存储过程
call insert_t_user(100);

關於存儲過程的創建和存儲,可暫時不執行,當用到時再執行。

資料庫版本及執行計劃

查看目前資料庫的版本:

select version();
8.0.18

上述為本人測試的資料庫版本: 8.0.18。當然,以下的所有範例,大家可在其他版本進行執行驗證。

查看SQL語句執行計劃,一般我們都採用explain關鍵字,透過執行結果來判斷索引使用情況。

執行範例:

explain select * from t_user where id = 1;

執行結果:

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

#可以看到上述SQL語句使用了主鍵索引(PRIMARY),key_len為4;

其中key_len的意思是:表示索引所使用的位元組數,根據這個值可以判斷索引的使用情況,特別是在組合索引的時候,判斷索引有多少部分被使用到非常重要。

做好以上資料及知識的準備,以下就開始講解具體索引失效的實例了。

1 聯合索引不滿足最左匹配原則

聯合索引遵從最左匹配原則,顧名思義,在聯合索引中,最左邊的字段優先匹配。因此,在建立聯合索引時,where子句中使用最頻繁的欄位放在組合索引的最左側。

而在查詢時,要想讓查詢條件走索引,則需滿足:最左邊的欄位要出現在查詢條件中。

實例中,union_idx聯合索引組成:

KEY `union_idx` (`id_no`,`username`,`age`)

最左邊的欄位為id_no,一般情況下,只要保證id_no出現在查詢條件中,就會走該聯合索引。

範例一

explain select * from t_user where id_no = &#39;1002&#39;;

explain結果:

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

透過explain執行結果可以看出,上述SQL語句走了union_idx這條索引。

這裡再普及一下key_len的運算:

  • id_no 類型為varchar(18),字元集為utf8mb4_bin,也就是使用4個位元組來表示一個完整的UTF-8。此時,key_len = 18* 4 = 72;
  • 由於此欄位類型varchar為變長資料類型,需要再額外增加2個位元組。此時,key_len = 72 2 = 74;
  • 由於該欄位運行為NULL(default NULL),則需要再增加1個位元組。此時,key_len = 74 1 = 75;

上面示範了key_len一種情況的計算過程,後續不再進行逐一推演,知道基本組成和原理即可,更多情況大家可自行查看。

範例二

explain select * from t_user where id_no = &#39;1002&#39; and username = &#39;Tom2&#39;;

explain結果:

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

很顯然,依舊走了union_idx 索引,根據上面key_len的分析,大膽猜測,在使用索引時,不僅使用了id_no列,還使用了username列。

範例三

explain select * from t_user where id_no = &#39;1002&#39; and age = 12;

explain結果:

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

走了union_idx索引,但跟示例一一样,只用到了id_no列。

当然,还有三列都在查询条件中的情况,就不再举例了。上面都是走索引的正向例子,也就是满足最左匹配原则的例子,下面来看看,不满足该原则的反向例子。

反向示例

explain select * from t_user where username = &#39;Tom2&#39; and age = 12;

explain结果:

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

此时,可以看到未走任何索引,也就是说索引失效了。

同样的,下面只要没出现最左条件的组合,索引也是失效的:

explain select * from t_user where age = 12;
explain select * from t_user where username = &#39;Tom2&#39;;

那么,第一种索引失效的场景就是:在联合索引的场景下,查询条件不满足最左匹配原则

2 使用了select *

在《阿里巴巴开发手册》的ORM映射章节中有一条【强制】的规范:

【强制】在表查询中,一律不要使用 * 作为查询的字段列表,需要哪些字段必须明确写明。 说明:1)增加查询分析器解析成本。2)增减字段容易与 resultMap 配置不一致。3)无用字段增加网络 消耗,尤其是 text 类型的字段。

虽然在规范手册中没有提到索引方面的问题,但禁止使用select * 语句可能会带来的附带好处就是:某些情况下可以走覆盖索引

比如,在上面的联合索引中,如果查询条件是age或username,当使用了select * ,肯定是不会走索引的。

但如果希望根据username查询出id_no、username、age这三个结果(均为索引字段),明确查询结果字段,是可以走覆盖索引的:

explain select id_no, username, age from t_user where username = &#39;Tom2&#39;;
explain select id_no, username, age from t_user where age = 12;

explain结果:

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

无论查询条件是username还是age,都走了索引,根据key_len可以看出使用了索引的所有列。

第二种索引失效场景:在联合索引下,尽量使用明确的查询列来趋向于走覆盖索引

这一条不走索引的情况属于优化项,如果业务场景满足,则进来促使SQL语句走索引。至于阿里巴巴开发手册中的规范,只不过是两者撞到一起了,规范本身并不是为这条索引规则而定的。

3 索引列参与运算

直接来看示例:

explain select * from t_user where id + 1 = 2 ;

explain结果:

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

可以看到,即便id列有索引,由于进行了计算处理,导致无法正常走索引。

针对这种情况,其实不单单是索引的问题,还会增加数据库的计算负担。就以上述SQL语句为例,数据库需要全表扫描出所有的id字段值,然后对其计算,计算之后再与参数值进行比较。如果每次执行都经历上述步骤,性能损耗可想而知。

建议的使用方式是:先在内存中进行计算好预期的值,或者在SQL语句条件的右侧进行参数值的计算。

针对上述示例的优化如下:

-- 内存计算,得知要查询的id为1
explain select * from t_user where id = 1 ;
-- 参数侧计算
explain select * from t_user where id = 2 - 1 ;

第三种索引失效情况:索引列参与了运算,会导致全表扫描,索引失效

4 索引列参使用了函数

示例:

explain select * from t_user where SUBSTR(id_no,1,3) = &#39;100&#39;;

explain结果:

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

上述示例中,索引列使用了函数(SUBSTR,字符串截取),导致索引失效。

此时,索引失效的原因与第三种情况一样,都是因为数据库要先进行全表扫描,获得数据之后再进行截取、计算,导致索引索引失效。同时,还伴随着性能问题。

示例中只列举了SUBSTR函数,像CONCAT等类似的函数,也都会出现类似的情况。解决方案可参考第三种场景,可考虑先通过内存计算或其他方式减少数据库来进行内容的处理。

第四种索引失效情况:索引列参与了函数处理,会导致全表扫描,索引失效

5 错误的Like使用

示例:

explain select * from t_user where id_no like &#39;%00%&#39;;

explain结果:

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

针对like的使用非常频繁,但使用不当往往会导致不走索引。常见的like使用方式有:

  • 方式一:like '%abc';
  • 方式二:like 'abc%';
  • 方式三:like '%abc%';

其中方式一和方式三,由于占位符出现在首部,导致无法走索引。这种情况不做索引的原因很容易理解,索引本身就相当于目录,从左到右逐个排序。而条件的左侧使用了占位符,导致无法按照正常的目录进行匹配,导致索引失效就很正常了。

第五种索引失效情况:模糊查询时(like语句),模糊匹配的占位符位于条件的首部

6 类型隐式转换

示例:

explain select * from t_user where id_no = 1002;

explain结果:

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

id_no字段类型为varchar,但在SQL语句中使用了int类型,导致全表扫描。

出现索引失效的原因是:varchar和int是两个种不同的类型。

解决方案就是将参数1002添加上单引号或双引号。

第六种索引失效情况:参数类型与字段类型不匹配,导致类型发生了隐式转换,索引失效

这种情况还有一个特例,如果字段类型为int类型,而查询条件添加了单引号或双引号,则Mysql会参数转化为int类型,虽然使用了单引号或双引号:

explain select * from t_user where id = &#39;2&#39;;

上述语句是依旧会走索引的。

7、使用OR操作

OR是日常使用最多的操作关键字了,但使用不当,也会导致索引失效。

示例:

explain select * from t_user where id = 2 or username = &#39;Tom2&#39;;

explain结果:

1你值得了解的15個Mysql索引失效場景(帶你快速避坑)

看到上述执行结果是否是很惊奇啊,明明id字段是有索引的,由于使用or关键字,索引竟然失效了。

其实,换一个角度来想,如果单独使用username字段作为条件很显然是全表扫描,既然已经进行了全表扫描了,前面id的条件再走一次索引反而是浪费了。所以,在使用or关键字时,切记两个条件都要添加索引,否则会导致索引失效。

但如果or两边同时使用“>”和“

explain select * from t_user where id  > 1 or id  < 80;

explain结果:

1你值得了解的15個Mysql索引失效場景(帶你快速避坑)

第七种索引失效情况:查询条件使用or关键字,其中一个字段没有创建索引,则会导致整个查询语句索引失效; or两边为“>”和“。

8 两列做比较

如果两个列数据都有索引,但在查询条件中对两列数据进行了对比操作,则会导致索引失效。

这里举个不恰当的示例,比如age小于id这样的两列(真实场景可能是两列同维度的数据比较,这里迁就现有表结构):

explain select * from t_user where id > age;

explain结果:

1你值得了解的15個Mysql索引失效場景(帶你快速避坑)

这里虽然id有索引,age也可以创建索引,但当两列做比较时,索引还是会失效的。

第八种索引失效情况:两列数据做比较,即便两列都创建了索引,索引也会失效

9 不等于比较

示例:

explain select * from t_user where id_no <> &#39;1002&#39;;

explain结果:

1你值得了解的15個Mysql索引失效場景(帶你快速避坑)

当查询条件为字符串时,使用”“或”!=“作为条件查询,有可能不走索引,但也不全是。

explain select * from t_user where create_time != &#39;2022-02-27 09:56:42&#39;;

上述SQL中,由于“2022-02-27 09:56:42”是存储过程在同一秒生成的,大量数据是这个时间。执行之后会发现,当查询结果集占比比较小时,会走索引,占比比较大时不会走索引。此处与结果集与总体的占比有关。

需要注意的是:上述语句如果是id进行不等操作,则正常走索引。

explain select * from t_user where id != 2;

explain结果:

1你值得了解的15個Mysql索引失效場景(帶你快速避坑)

第九种索引失效情况:查询条件使用不等进行比较时,需要慎重,普通索引会查询结果集占比较大时索引会失效

10 is not null

示例:

explain select * from t_user where id_no is not null;

explain结果:

1你值得了解的15個Mysql索引失效場景(帶你快速避坑)

第十种索引失效情况:查询条件使用is null时正常走索引,使用is not null时,不走索引

11 not in和not exists

在日常中使用比较多的范围查询有in、exists、not in、not exists、between and等。

explain select * from t_user where id in (2,3);

explain select * from t_user where id_no in (&#39;1001&#39;,&#39;1002&#39;);

explain select * from t_user u1 where exists (select 1 from t_user u2 where u2.id  = 2 and u2.id = u1.id);

explain select * from t_user where id_no between &#39;1002&#39; and &#39;1003&#39;;

上述四种语句执行时都会正常走索引,具体的explain结果就不再展示。主要看不走索引的情况:

explain select * from t_user where id_no not in(&#39;1002&#39; , &#39;1003&#39;);

explain结果:

1你值得了解的15個Mysql索引失效場景(帶你快速避坑)

当使用not in时,不走索引?把条件列换成主键试试:

explain select * from t_user where id not in (2,3);

explain结果:

1你值得了解的15個Mysql索引失效場景(帶你快速避坑)

如果是主键,则正常走索引。

第十一种索引失效情况:查询条件使用not in时,如果是主键则走索引,如果是普通索引,则索引失效

再来看看not exists

explain select * from t_user u1 where not exists (select 1 from t_user u2 where u2.id  = 2 and u2.id = u1.id);

explain结果:

1你值得了解的15個Mysql索引失效場景(帶你快速避坑)

当查询条件使用not exists时,不走索引。

第十二种索引失效情况:查询条件使用not exists时,索引失效

12 order by导致索引失效

示例:

explain select * from t_user order by id_no ;

explain结果:

你值得了解的15個Mysql索引失效場景(帶你快速避坑)

其实这种情况的索引失效很容易理解,毕竟需要对全表数据进行排序处理。

那么,添加删limit关键字是否就走索引了呢?

explain select * from t_user order by id_no limit 10;

explain结果:

2你值得了解的15個Mysql索引失效場景(帶你快速避坑)

结果依旧不走索引。在网络上看到有说如果order by条件满足最左匹配则会正常走索引, 在当前8.0.18版本中并未出现。所以,在基于order bylimit进行使用时,要特别留意。是否走索引不仅涉及到数据库版本,还要看Mysql优化器是如何处理的。

这里还有一个特例,就是主键使用order by时,可以正常走索引。

explain select * from t_user order by id desc;

explain结果:

2你值得了解的15個Mysql索引失效場景(帶你快速避坑)

可以看出针对主键,还是order by可以正常走索引。

另外,笔者测试如下SQL语句:

explain select id from t_user order by age;
explain select id , username from t_user order by age;
explain select id_no from t_user order by id_no;

上述三条SQL语句都是走索引的,也就是说覆盖索引的场景也是可以正常走索引的。

现在将idid_no组合起来进行order by

explain select * from t_user order by id,id_no desc;
explain select * from t_user order by id,id_no desc limit 10;
explain select * from t_user order by id_no desc,username desc;

explain结果:

2你值得了解的15個Mysql索引失效場景(帶你快速避坑)

上述两个SQL语句,都未走索引。

第十三种索引失效情况:当查询条件涉及到order by、limit等条件时,是否走索引情况比较复杂,而且与Mysql版本有关,通常普通索引,如果未使用limit,则不会走索引。order by多个索引字段时,可能不会走索引。其他情况,建议在使用时进行expain验证。

13 参数不同导致索引失效

此时,如果你还未执行最开始创建的存储过程,建议你先执行一下存储过程,然后执行如下SQL:

explain select * from t_user where create_time > &#39;2023-02-24 09:04:23&#39;;

其中,时间是未来的时间,确保能够查到数据。

explain结果:

2你值得了解的15個Mysql索引失效場景(帶你快速避坑)

可以看到,正常走索引。

随后,我们将查询条件的参数换个日期:

explain select * from t_user where create_time > &#39;2022-02-27 09:04:23&#39;;

explain结果:

2你值得了解的15個Mysql索引失效場景(帶你快速避坑)

此时,进行了全表扫描。这也是最开始提到的奇怪的现象。

为什么同样的查询语句,只是查询的参数值不同,却会出现一个走索引,一个不走索引的情况呢?

答案很简单:上述索引失效是因为DBMS发现全表扫描比走索引效率更高,因此就放弃了走索引

也就是说,当Mysql发现通过索引扫描的行记录数超过全表的10%-30%时,优化器可能会放弃走索引,自动变成全表扫描。某些场景下即便强制SQL语句走索引,也同样会失效。

类似的问题,在进行范围查询(比如>、=、

第十四種索引失效情況:當查詢條件為大於等於、in等範圍查詢時,根據查詢結果佔全表資料比例的不同,優化器有可能會放棄索引,進行全表掃描。

14 其他

當然,還有其他一些是否走索引的規則,這與索引的類型是B-tree索引還是位圖索引也有關係,就不再詳細展開。

這裡要說的其他,可以總結為第十五種索引失效的情況:Mysql優化器的其他優化策略,例如優化器認為在某些情況下,全表掃描比走索引快,則它就會放棄索引。

針對這種情況,一般不用過多理會,當發現問題時再定點排查即可。

小結

這篇文章為大家總結了15個常見的索引失效的場景,由於不同的Mysql版本,索引失效策略也有所不同。大多數索引失效情況都是明確的,有少數索引失效會因Mysql的版本不同而有所不同。因此,建議收藏本文,當在實踐的過程中進行對照,如果沒辦法準確掌握,則可直接執行explain進行驗證。

【相關推薦:mysql影片教學

#

以上是你值得了解的15個Mysql索引失效場景(帶你快速避坑)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:掘金社区。如有侵權,請聯絡admin@php.cn刪除
MySQL與Sqlite有何不同?MySQL與Sqlite有何不同?Apr 24, 2025 am 12:12 AM

MySQL和SQLite的主要區別在於設計理念和使用場景:1.MySQL適用於大型應用和企業級解決方案,支持高性能和高並發;2.SQLite適合移動應用和桌面軟件,輕量級且易於嵌入。

MySQL中的索引是什麼?它們如何提高性能?MySQL中的索引是什麼?它們如何提高性能?Apr 24, 2025 am 12:09 AM

MySQL中的索引是數據庫表中一列或多列的有序結構,用於加速數據檢索。 1)索引通過減少掃描數據量提升查詢速度。 2)B-Tree索引利用平衡樹結構,適合範圍查詢和排序。 3)創建索引使用CREATEINDEX語句,如CREATEINDEXidx_customer_idONorders(customer_id)。 4)複合索引可優化多列查詢,如CREATEINDEXidx_customer_orderONorders(customer_id,order_date)。 5)使用EXPLAIN分析查詢計劃,避

說明如何使用MySQL中的交易來確保數據一致性。說明如何使用MySQL中的交易來確保數據一致性。Apr 24, 2025 am 12:09 AM

在MySQL中使用事務可以確保數據一致性。 1)通過STARTTRANSACTION開始事務,執行SQL操作後用COMMIT提交或ROLLBACK回滾。 2)使用SAVEPOINT可以設置保存點,允許部分回滾。 3)性能優化建議包括縮短事務時間、避免大規模查詢和合理使用隔離級別。

在哪些情況下,您可以選擇PostgreSQL而不是MySQL?在哪些情況下,您可以選擇PostgreSQL而不是MySQL?Apr 24, 2025 am 12:07 AM

選擇PostgreSQL而非MySQL的場景包括:1)需要復雜查詢和高級SQL功能,2)要求嚴格的數據完整性和ACID遵從性,3)需要高級空間功能,4)處理大數據集時需要高性能。 PostgreSQL在這些方面表現出色,適合需要復雜數據處理和高數據完整性的項目。

如何保護MySQL數據庫?如何保護MySQL數據庫?Apr 24, 2025 am 12:04 AM

MySQL數據庫的安全可以通過以下措施實現:1.用戶權限管理:通過CREATEUSER和GRANT命令嚴格控制訪問權限。 2.加密傳輸:配置SSL/TLS確保數據傳輸安全。 3.數據庫備份和恢復:使用mysqldump或mysqlpump定期備份數據。 4.高級安全策略:使用防火牆限制訪問,並啟用審計日誌記錄操作。 5.性能優化與最佳實踐:通過索引和查詢優化以及定期維護兼顧安全和性能。

您可以使用哪些工具來監視MySQL性能?您可以使用哪些工具來監視MySQL性能?Apr 23, 2025 am 12:21 AM

如何有效監控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。 1.使用mysqladmin查看連接數。 2.用SHOWGLOBALSTATUS查看查詢數。 3.PMM提供詳細性能數據和圖形化界面。 4.MySQLEnterpriseMonitor提供豐富的監控功能和報警機制。

MySQL與SQL Server有何不同?MySQL與SQL Server有何不同?Apr 23, 2025 am 12:20 AM

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显著差异,选择时需考虑项目规模和未来扩展性。

在哪些情況下,您可以選擇SQL Server而不是MySQL?在哪些情況下,您可以選擇SQL Server而不是MySQL?Apr 23, 2025 am 12:20 AM

在需要高可用性、高級安全性和良好集成性的企業級應用場景下,應選擇SQLServer而不是MySQL。 1)SQLServer提供企業級功能,如高可用性和高級安全性。 2)它與微軟生態系統如VisualStudio和PowerBI緊密集成。 3)SQLServer在性能優化方面表現出色,支持內存優化表和列存儲索引。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)