這篇文章帶大家聊聊一個Python Pandas庫的使用小技巧,介紹一下使用query()優雅查詢的方法,希望對大家有幫助!
對於Pandas 根據條件取得指定數據,相信大家都能夠輕鬆的寫出相應程式碼,但是如果你還沒用過query,相信你會被它的簡潔所折服!
先建立一個 DataFrame。
import pandas as pd df = pd.DataFrame( {'A': ['e', 'd', 'c', 'b', 'a'], 'B': ['f', 'b', 'c', 'd', 'e'], 'C': range(0, 10, 2), 'D': range(10, 0, -2), 'E.E': range(10, 5, -1)})
我們現在選取 A列字母出現在B列 的所有行。先看兩種常見寫法。
>>> df[df['A'].isin(df['B'])] A B C D E.E 0 e f 0 10 10 1 d b 2 8 9 2 c c 4 6 8 3 b d 6 4 7 >>> df.loc[df['A'].isin(df['B'])] A B C D E.E 0 e f 0 10 10 1 d b 2 8 9 2 c c 4 6 8 3 b d 6 4 7
下面使用 query()
來實作。
>>> df.query("A in B") A B C D E.E 0 e f 0 10 10 1 d b 2 8 9 2 c c 4 6 8 3 b d 6 4 7
可以看到使用 query
後的程式碼簡潔易懂,而且它對於記憶體的消耗也更小。
多條件查詢
選取A列字母出現在B列,且C列小於D列 的所有行。
>>> df.query(&#39;A in B and C < D&#39;) A B C D E.E 0 e f 0 10 10 1 d b 2 8 9 2 c c 4 6 8
這裡 and
也可以用 &
表示。
引用變數
表達式中也可以使用外部定義的變量,在變數名前用@標示。
>>> number = 5 >>> df.query(&#39;A in B & C > @number&#39;) A B C D E.E 3 b d 6 4 7
索引選取
選取 A列字母出現在B列,且索引大於2 的所有行。
>>> df.query(&#39;A in B and index > 2&#39;) A B C D E.E 3 b d 6 4 7
多重索引選取
建立一個兩層索引的 DataFrame。
>>> import numpy as np >>> colors = [&#39;yellow&#39;]*3 + [&#39;red&#39;]*2 >>> rank = [str(i) for i in range(5)] >>> index = pd.MultiIndex.from_arrays([colors, rank], names=[&#39;color&#39;, &#39;rank&#39;]) >>> df = pd.DataFrame(np.arange(10).reshape(5, 2),columns=[&#39;A&#39;, &#39;B&#39;] , index=index) >>> df = pd.DataFrame(np.arange(10).reshape(5, 2),columns=[&#39;A&#39;, &#39;B&#39;] , index=index) >>> df A B color rank yellow 0 0 1 1 2 3 2 4 5 red 3 6 7 4 8 9
1、當有多層索引有名稱時,透過索引名稱直接選取。
>>> df.query("color == &#39;red&#39;") A B color rank red 3 6 7 4 8 9
2、當有多層索引無名時,透過索引等級來選取。
>>> df.index.names = [None, None] >>> df.query("ilevel_0 == &#39;red&#39;") A B red 3 6 7 4 8 9 >>> df.query("ilevel_1 == &#39;4&#39;") A B red 4 8 9
特殊字元
對於列名中間有空格或運算子等其他特殊符號,則需要使用反引號``
。
>>> df.query(&#39;A == B | (C + 2 > `E.E`)&#39;) A B C D E.E 2 c c 4 6 8 3 b d 6 4 7 4 a e 8 2 6
總的來說,query() 用法比較簡單,可以快速上手,程式碼可讀性也提高了不少。
【相關推薦:Python3影片教學 】
以上是一文了解Python中如何使用query()進行優雅的查詢的詳細內容。更多資訊請關注PHP中文網其他相關文章!