這篇文章為大家帶來了mysql不能用uuid做主鍵的相關知識,mysql官方推薦不要使用uuid或者不連續不重複的雪花id,而是推薦連續自增的主鍵id,官方的推薦是auto_increment,那麼為什不建議採用uuid,希望對大家有幫助。
前言
#在mysql設計表的時候,mysql官方推薦不要使用uuid或不連續不重複的雪花id(long形且唯一,單機遞增),而是推薦連續自增的主鍵id,官方的推薦是auto_increment,那麼為什麼不建議採用uuid,使用uuid究竟有什麼壞處?
一、mysql與程式實例
#1.1.要說明這個問題,我們先來建立三張表
分別是user_auto_key,user_uuid,user_random_key,分別表示自動增長的主鍵,uuid作為主鍵,
隨機key作為主鍵,其它我們完全保持不變.
#根據控制變數法,我們只把每個表的主鍵使用不同的策略生成,而其他的字段完全一樣,然後測試一下表的插入速度和查詢速度:
註:這裡的隨機key其實是指用雪花演算法算出來的前後不連續不重複無規律的id:一串18位元長度的long值
##1.2.光有理論不行,直接上程式,使用spring的jdbcTemplate來實現增查測試:
技術框架:springboot jdbcTemplate junit hutool,程序的原理就是連接自己的測試資料庫,然後在相同的環境下寫入同等數量的數據,來分析一下insert插入的時間來進行綜合其效率,為了做到最真實的效果,所有的數據採用隨機生成,例如名字、信箱、地址都是隨機產生。package com.wyq.mysqldemo; import cn.hutool.core.collection.CollectionUtil; import com.wyq.mysqldemo.databaseobject.UserKeyAuto; import com.wyq.mysqldemo.databaseobject.UserKeyRandom; import com.wyq.mysqldemo.databaseobject.UserKeyUUID; import com.wyq.mysqldemo.diffkeytest.AutoKeyTableService; import com.wyq.mysqldemo.diffkeytest.RandomKeyTableService; import com.wyq.mysqldemo.diffkeytest.UUIDKeyTableService; import com.wyq.mysqldemo.util.JdbcTemplateService; import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.util.StopWatch; import java.util.List; @SpringBootTest class MysqlDemoApplicationTests { @Autowired private JdbcTemplateService jdbcTemplateService; @Autowired private AutoKeyTableService autoKeyTableService; @Autowired private UUIDKeyTableService uuidKeyTableService; @Autowired private RandomKeyTableService randomKeyTableService; @Test void testDBTime() { StopWatch stopwatch = new StopWatch("执行sql时间消耗"); /** * auto_increment key任务 */ final String insertSql = "INSERT INTO user_key_auto(user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?)"; List<UserKeyAuto> insertData = autoKeyTableService.getInsertData(); stopwatch.start("自动生成key表任务开始"); long start1 = System.currentTimeMillis(); if (CollectionUtil.isNotEmpty(insertData)) { boolean insertResult = jdbcTemplateService.insert(insertSql, insertData, false); System.out.println(insertResult); } long end1 = System.currentTimeMillis(); System.out.println("auto key消耗的时间:" + (end1 - start1)); stopwatch.stop(); /** * uudID的key */ final String insertSql2 = "INSERT INTO user_uuid(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)"; List<UserKeyUUID> insertData2 = uuidKeyTableService.getInsertData(); stopwatch.start("UUID的key表任务开始"); long begin = System.currentTimeMillis(); if (CollectionUtil.isNotEmpty(insertData)) { boolean insertResult = jdbcTemplateService.insert(insertSql2, insertData2, true); System.out.println(insertResult); } long over = System.currentTimeMillis(); System.out.println("UUID key消耗的时间:" + (over - begin)); stopwatch.stop(); /** * 随机的long值key */ final String insertSql3 = "INSERT INTO user_random_key(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)"; List<UserKeyRandom> insertData3 = randomKeyTableService.getInsertData(); stopwatch.start("随机的long值key表任务开始"); Long start = System.currentTimeMillis(); if (CollectionUtil.isNotEmpty(insertData)) { boolean insertResult = jdbcTemplateService.insert(insertSql3, insertData3, true); System.out.println(insertResult); } Long end = System.currentTimeMillis(); System.out.println("随机key任务消耗时间:" + (end - start)); stopwatch.stop(); String result = stopwatch.prettyPrint(); System.out.println(result); }1.3.程式寫入結果 #可以看出在資料量100W左右的時候,uuid的插入效率墊底,並且在後序增加了130W的數據,uudi的時間又直線下降。 時間佔用量整體可以打出的效率排名為:auto_key>random_key>uuid,uuid的效率最低,在資料量較大的情況下,效率直線下滑。那為什麼會出現這樣的現象呢?帶著疑問,我們來探討一下這個問題:
二、使用uuid和自增id的索引結構比較
2.1.使用自增id的內部結構
自增的主鍵的值是順序的,所以Innodb把每一筆記錄都儲存在一筆記錄的後面。當達到頁面的最大填滿因子時候(innodb預設的最大填滿因子是頁大小的15/16,會留出1/16的空間留出以後的修改):#①下一筆記錄就會寫入新的頁面中,一旦資料按照這種順序的方式加載,主鍵頁就會近乎於順序的記錄填滿,提升了頁面的最大填充率,不會有頁的浪費②新插入的行一定會在原有的最大資料行下一行,mysql定位和定址很快,不會為計算新行的位置而做出額外的消耗③減少了頁分裂和碎片的產生2.2.使用uuid的索引內部結構
#因為uuid相對順序的自增id來說是毫無規律可言的,新行的值不一定要比之前的主鍵的值要大,所以innodb無法做到總是把新行插入到索引的最後,而是需要為新行尋找新的合適的位置從而來分配新的空間。 這個過程需要做很多額外的操作,資料的毫無順序會導致資料分佈散亂,將會導致以下的問題:①寫入的目標頁很可能已經刷新到磁碟上並且從快取上移除,或者還沒有被加載到快取中,innodb在插入之前必須先找到並從磁碟讀取目標頁到記憶體中,這將導致大量的隨機IO# ②因為寫入是亂序的,innodb不得不頻繁的做頁分裂操作,以便為新的行分配空間,頁分裂導致移動大量的數據,一次插入最少需要修改三個頁以上③由於頻繁的頁分裂,頁會變得稀疏並被不規則的填充,最終會導致資料會有碎片
在把隨機值(uuid和雪花id)載入到叢集索引(innodb預設的索引類型)以後,有時候會需要做一次OPTIMEIZE TABLE來重建表並優化頁的填充,這將又需要一定的時間消耗。
結論:使用innodb應該盡可能的按主鍵的自增順序插入,並且盡可能使用單調的增加的聚簇鍵的值來插入新行
2.3.使用自增id的缺點
那麼使用自增的id就完全沒有壞處了嗎?並不是,自增id也會存在以下幾點問題:
①別人一旦爬取你的數據庫,就可以根據數據庫的自增id獲取到你的業務增長信息,很容易分析出你的經營情況
②對於高並發的負載,innodb在按主鍵進行插入的時候會造成明顯的鎖爭用,主鍵的上界會成為爭搶的熱點,因為所有的插入都發生在這裡,並發插入會導致間隙鎖競爭
③Auto_Increment鎖定機制會造成自增鎖的搶奪,有一定的性能損失
附:Auto_increment的鎖爭搶問題,如果要改善需要調優innodb_autoinc_lock_mode的配置
三、總結
本篇部落格首先從開篇的提出問題,建表到使用jdbcTemplate去測試不同id的生成策略在大數據量的資料插入表現,然後分析了id的機制不同在mysql的索引結構以及優缺點,深入的解釋了為何uuid和隨機不重複id在數據插入中的性能損耗,詳細的解釋了這個問題。
在實際的開發中還是根據mysql的官方推薦最好使用自增id,mysql博大精深,內部還有很多值得優化的點需要我們學習。
推薦學習:mysql影片教學
#以上是一起聊聊MySQL為啥不能用uuid做主鍵的詳細內容。更多資訊請關注PHP中文網其他相關文章!