這篇文章帶大家了解一下MySQL中的事務隔離,介紹一下事務的特性、隔離等級、事務啟動的方式等,希望對大家有幫助!
交易就是要確保一組資料庫操作,要嘛全部成功,要嘛全部失敗。在MySQL中,事務支援是在引擎層實現的,但並不是所有的引擎都支援事務。例如MySQL原生的MyISAM引擎就不支援事務。 【相關推薦:mysql教學(影片)】
無法重複讀取:一個事務讀取到了另一個事務中提交的update的資料
可重複讀取:一個事務執行過程中看到的數據,總是跟這個事務在啟動時看到的數據是一致的,而且未提交變更對其他事務也是不可見的(解決髒讀與不可重複讀,MySQL預設的隔離等級)
序列化:對於同一行記錄,寫會加寫鎖,讀會加讀鎖,當出現讀寫鎖衝突的時候,後存取的事務必須等前一個事務執行完成,才能繼續執行(解決髒讀、不可重複讀取和幻讀)
安全性依序提交,效能依序降低3 .假設資料表T中只有一列,其中一行的值為1
create table T(c int) engine=InnoDB; insert into T(c) values(1);
在MySQL中,每筆記錄在更新的時候都會同時記錄一則回滾操作。記錄上的最新值,透過回滾操作,都可以得到前一個狀態的值
假設一個值從1被依序改成了2、3、4,在回滾日誌裡面就會有類似下面的記錄系统会判断,当没有事务再需要用到这些回滚日志时,回滚日志会被删除
MySQL的事务启动方式有以下几种:
建议使用set autocommit=1,通过显示语句的方式来启动事务
可以在information_schema库中的innodb_trx这个表中查询长事务,如下语句查询持续时间超过60s的事务
select * from information_schema.innodb_trx where TIME_TO_SEC(timediff(now(),trx_started))>60
下面是一个只有两行的表的初始化语句:
mysql> CREATE TABLE `t` ( `id` int(11) NOT NULL, `k` int(11) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB; insert into t(id, k) values(1,1),(2,2);
事务A、B、C的执行流程如下,采用可重复读隔离级别
begin/start transaction命令:不是一个事务的起点,在执行到它们之后的第一个操作InnoDB表的语句,事务才真正启动,一致性视图是在执行第一个快照读语句时创建的
start transaction with consistent snapshot命令:马上启动一个事务,一致性视图是在执行这条命令时创建的
按照上图的流程执行,事务B查到的k的值是3,而事务A查到的k的值是1
在可重复读隔离级别下,事务启动的时候拍了个快照。这个快照是基于整个库的,那么这个快照是如何实现的?
InnoDB里面每个事务有一个唯一的事务ID,叫做transaction id。它在事务开始的时候向InnoDB的事务系统申请,是按申请顺序严格递增的
每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把transaction id赋值给这个数据版本的事务ID,记作row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。也就是说,数据表中的一行记录,其实可能有多个版本,每个版本有自己的row trx_id
下图是一个记录被多个事务连续更新后的状态:
语句更新生成的undo log(回滚日志)就是上图中的是哪个虚线箭头,而V1、V2、V3并不是物理上真实存在的,而是每次需要的时候根据当前版本和undo log计算出来的。比如,需要V2的时候,就是通过V4依次执行U3、U2算出来的
按照可重复读的定义,一个事务启动的时候,能够看到所以已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见。在实现上,InnoDB为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前在启动了但还没提交的所有事务ID。数组里面事务ID的最小值记为低水位,当前系统里面已经创建过的事务ID的最大值加1记为高水位。这个视图数组和高水位就组成了当前事务的一致性视图。而数据的可见性规则,就是基于数据的row trx_id和这个一致性视图的对比结果得到的
这个视图数组把所有的row trx_id分成了几种不同的情况
对于当前事务的启动瞬间来说,一个数据版本的row trx_id,有以下几种可能:
1)如果落在绿色部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的
2)如果落在红色部分,表示这个版本是由将来启动的事务生成的,肯定不可见
3)如果落在黄色部分,那就包括两种情况
InnoDB利用了所有数据都有多个版本的这个特性,实现了秒级创建快照的能力
假设:
1.事务A开始时,系统里面只有一个活跃事务ID是99
2.事务A、B、C的版本号分别是100、101、102
3.三个事务开始前,(1,1)这一行数据的row trx_id是90
這樣,事務A的是數組就是[99,100],事務B的視圖數組是[99,100,101],事務C的視圖數組是[99,100,101,102]
從上圖可以看到,第一個有效更新是事務C,從資料從(1,1)改成了(1,2)。這時候,這個資料的最新版本的row trx_id是102,而90這個版本已經成為了歷史版本
第二個有效更新是事務B,把資料從(1,2)改成了( 1,3)。這時候,這個資料的最新版本是101,而102又成為了歷史版本
在事務A查詢的時候,其實事務B還沒提交,但是它產生的(1,3)這個版本已經變成當前版本了。但這個版本對事務A必須是看不見的,否則就變成髒讀了
現在事務A要讀資料了,它的視圖數組是[99,100]。讀取資料都是從目前版本讀起的。所以,事務A查詢語句的讀取資料流程是這樣的:
雖然期間這一行資料被修改過,但是事務A不論在什麼時候查詢,看到這行資料的結果都是一致的,我們稱之為一致性讀
一個資料版本,對於一個交易視圖來說,除了自己的更新總是可見以外,有三種情況:
事務A的查詢語句的視圖陣列是在事務A啟動的時候產生的,這時候:
事務B要去更新資料的時候,就不能再在歷史版本上更新了,否則交易C的更新就遺失了。因此,事務B此時的set k=k 1是在(1,2)的基礎上進行的操作
#更新資料都是先讀後寫的,而這個讀,只能讀取目前的值,稱為目前讀取。除了update語句外,select語句如果加鎖,也是當前讀
假設事務C不是馬上提交的,而是變成了下面的事務C’,會怎麼樣?
上圖中,交易C更新後沒有馬上提交,在它提交前,交易B的更新語句先發起了。雖然事務C還沒提交,但是(1,2)這個版本也已經生成了,並且是當前的最新版本
這時候涉及到了兩階段鎖協議,事務C沒提交,也就是說( 1,2)這個版本上的寫鎖還沒被釋放。而事務B是當前讀,必須要讀最新版本,而且必須加鎖,因此就被鎖住了,必須等到事務C釋放這個鎖,才能繼續它的當前讀
可重複讀取的核心就是一致性讀;而交易更新資料的時候,只能用目前讀。如果目前的記錄的行鎖被其他交易佔用的話,就需要進入鎖等待
而讀提交的邏輯和可重複讀取的邏輯類似,它們最主要的區別是:
更多程式相關知識,請造訪:程式設計影片! !
以上是帶你去聊聊MySQL中的事務隔離的詳細內容。更多資訊請關注PHP中文網其他相關文章!