資料庫SQL最佳化是老生常談的問題,在面對百萬級資料量的分頁查詢,又有什麼好的最佳化建議呢?以下將列舉了一些常用的方法,供大家參考學習!
方法1: 直接使用資料庫提供的SQL語句
- #語句樣式: MySQL中,可用如下方法: SELECT * FROM 表名稱LIMIT M,N
- 適應場景: 適用於資料量較少的情況(元組百/千級)
- 原因/缺點: 全表掃描,速度會很慢且有的資料庫結果集返回不穩定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是從結果集的M位置處取出N條輸出,其餘拋棄.
方法2: 建立主鍵或唯一索引, 利用索引(假設每頁10條)
- 語句樣式: MySQL中,可用如下方法: SELECT * FROM 表名稱WHERE id_pk > (pageNum*10) LIMIT M
- 適應場景: 適用於資料量多的情況(元組數上萬)
- 原因: 索引掃描,速度會很快.有朋友提出: 因為資料查詢出來並不是按照pk_id排序的,所以會有漏掉資料的情況,只能方法3
方法3: 基於索引再排序
- #語句樣式: MySQL中,可用下列方法: SELECT * FROM 表名稱WHERE id_pk > (pageNum*10) ORDER BY id_pk ASC LIMIT M
- 適應場景: 適用於資料量多的情況(元組數上萬).最好ORDER BY後的列物件是主鍵或唯一所以,使得ORDERBY操作能利用索引被消除但結果集是穩定的(穩定的含義,參見方法1)
- 原因: 索引掃描,速度會很快. 但MySQL的排序操作,只有ASC沒有DESC(DESC是假的,未來會做真正的DESC,期待...).
方法4: 基於索引使用prepare
第一個問號表示pageNum,第二個?表示每頁元組數
- 語句樣式: MySQL中,可用如下方法: PREPARE stmt_name FROM SELECT * FROM 表名稱WHERE id_pk > (?* ?)ORDER BY id_pk ASC LIMIT M
- 適應場景: 大數據量
- 原因: 索引掃描,速度會很快. prepare語句又比一般的查詢語句快一點。
方法5: 利用MySQL支援ORDER操作可以利用索引快速定位部分元組,避免全表掃描
例如: 讀第1000到1019行元組(pk是主鍵/唯一鍵).
SELECT * FROM your_table WHERE pk>=1000 ORDER BY pk ASC LIMIT 0,20
方法6: 利用子查詢/連接索引快速定位元組的位置,然後再讀取元組.
例如(id是主鍵/唯一鍵,藍色字體時變數)
利用子查詢範例:
SELECT * FROM your_table WHERE id <= (SELECT id FROM your_table ORDER BY id desc LIMIT ($page-1)*$pagesize ORDER BY id desc LIMIT $pagesize
利用連線範例:
SELECT * FROM your_table AS t1 JOIN (SELECT id FROM your_table ORDER BY id desc LIMIT ($page-1)*$pagesize AS t2 WHERE t1.id <= t2.id ORDER BY t1.id desc LIMIT $pagesize;
mysql大數據量使用limit分頁,隨著頁碼的增加,查詢效率越低。
測試實驗
1. 直接用limit start, count分頁語句, 也是我程式中用的方法:
select * from product limit start, count
當起始頁較小時,查詢沒有效能問題,我們分別看下從10, 100, 1000, 10000開始分頁的執行時間(每頁取20條)。
如下:
select * from product limit 10, 20 0.016秒 select * from product limit 100, 20 0.016秒 select * from product limit 1000, 20 0.047秒 select * from product limit 10000, 20 0.094秒
我們已經看出隨著起始記錄的增加,時間也隨著增大, 這說明分頁語句limit跟起始頁碼是有很大關係的,那我們把起始記錄改為40w看下(也就是記錄的一般左右)
select * from product limit 400000, 20 3.229秒
再看我們取最後一頁記錄的時間
select * from product limit 866613, 20 37.44秒
像這種分頁最大的頁碼頁顯然這種時間是無法忍受的。
從中我們也能總結出兩件事:
- limit語句的查詢時間與起始記錄的位置成正比
- mysql的limit語句是很方便,但是記錄很多的表格並不適合直接使用。
2. 對limit分頁問題的效能最佳化方法
利用表格的覆寫索引來加速分頁查詢
我們都知道,利用了索引查詢的語句中如果只包含了那個索引列(覆蓋索引),那麼這種情況會查詢很快。
因為利用索引查找有最佳化演算法,且資料就在查詢索引上面,不用再去找相關的資料位址了,這樣節省了很多時間。另外Mysql中也有相關的索引緩存,在並發高的時候利用快取就效果更好了。
在我們的例子中,我們知道id欄位是主鍵,自然就包含了預設的主鍵索引。現在讓我們看看利用覆蓋索引的查詢效果如何。
這次我們之間查詢最後一頁的資料(利用覆蓋索引,只包含id列),如下:
select id from product limit 866613, 20 0.2秒
相對於查詢了所有列的37.44秒,提升了大概100多倍的速度
那么如果我们也要查询所有列,有两种方法,一种是id>=的形式,另一种就是利用join,看下实际情况:
SELECT * FROM product WHERE ID > =(select id from product limit 866613, 1) limit 20
查询时间为0.2秒!
另一种写法
SELECT * FROM product a JOIN (select id from product limit 866613, 20) b ON a.ID = b.id
查询时间也很短!
3. 复合索引优化方法
MySql 性能到底能有多高?MySql 这个数据库绝对是适合dba级的高手去玩的,一般做一点1万篇新闻的小型系统怎么写都可以,用xx框架可以实现快速开发。可是数据量到了10万,百万至千万,他的性能还能那么高吗?一点小小的失误,可能造成整个系统的改写,甚至更本系统无法正常运行!好了,不那么多废话了。
用事实说话,看例子:
数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引。这是一个基本的新闻系统的简单模型。现在往里面填充数据,填充10万篇新闻。最后collect 为 10万条记录,数据库表占用硬1.6G。
OK ,看下面这条sql语句:
select id,title from collect limit 1000,10;
很快;基本上0.01秒就OK,再看下面的
select id,title from collect limit 90000,10;
从9万条开始分页,结果?
8-9秒完成,my god 哪出问题了?其实要优化这条数据,网上找得到答案。看下面一条语句:
select id from collect order by id limit 90000,10;
很快,0.04秒就OK。为什么?因为用了id主键做索引当然快。网上的改法是:
select id,title from collect where id>=(select id from collect order by id limit 90000,1) limit 10;
这就是用了id做索引的结果。可是问题复杂那么一点点,就完了。看下面的语句
select id from collect where vtype=1 order by id limit 90000,10;
很慢,用了8-9秒!
到了这里我相信很多人会和我一样,有崩溃感觉!vtype 做了索引了啊?怎么会慢呢?vtype做了索引是不错,你直接
select id from collect where vtype=1 limit 1000,10;
是很快的,基本上0.05秒,可是提高90倍,从9万开始,那就是0.05*90=4.5秒的速度了。和测试结果8-9秒到了一个数量级。
从这里开始有人提出了分表的思路,这个和dis #cuz 论坛是一样的思路。思路如下:
建一个索引表:t (id,title,vtype) 并设置成定长,然后做分页,分页出结果再到 collect 里面去找info 。是否可行呢?实验下就知道了。
10万条记录到 t(id,title,vtype) 里,数据表大小20M左右。用
select id from collect where vtype=1 limit 1000,10;
很快了。基本上0.1-0.2秒可以跑完。为什么会这样呢?我猜想是因为collect 数据太多,所以分页要跑很长的路。limit 完全和数据表的大小有关的。其实这样做还是全表扫描,只是因为数据量小,只有10万才快。OK, 来个疯狂的实验,加到100万条,测试性能。加了10倍的数据,马上t表就到了200多M,而且是定长。还是刚才的查询语句,时间是0.1-0.2秒完成!分表性能没问题?
错!因为我们的limit还是9万,所以快。给个大的,90万开始
select id from t where vtype=1 order by id limit 900000,10;
看看结果,时间是1-2秒!why ?
分表了时间还是这么长,非常之郁闷!有人说定长会提高limit的性能,开始我也以为,因为一条记录的长度是固定的,mysql 应该可以算出90万的位置才对啊?可是我们高估了mysql 的智能,他不是商务数据库,事实证明定长和非定长对limit影响不大?怪不得有人说discuz到了100万条记录就会很慢,我相信这是真的,这个和数据库设计有关!
难道MySQL 无法突破100万的限制吗???到了100万的分页就真的到了极限?
答案是:NO 为什么突破不了100万是因为不会设计mysql造成的。下面介绍非分表法,来个疯狂的测试!一张表搞定100万记录,并且10G 数据库,如何快速分页!
好了,我们的测试又回到 collect表,开始测试结论是:
30万数据,用分表法可行,超过30万他的速度会慢道你无法忍受!当然如果用分表+我这种方法,那是绝对完美的。但是用了我这种方法后,不用分表也可以完美解决!
答案就是:复合索引!有一次设计mysql索引的时候,无意中发现索引名字可以任取,可以选择几个字段进来,这有什么用呢?
开始的
select id from collect order by id limit 90000,10;
这么快就是因为走了索引,可是如果加了where 就不走索引了。抱着试试看的想法加了 search(vtype,id) 这样的索引。
然后测试
select id from collect where vtype=1 limit 90000,10;
非常快!0.04秒完成!
再测试:
select id ,title from collect where vtype=1 limit 90000,10;
非常遗憾,8-9秒,没走search索引!
再测试:search(id,vtype),还是select id 这个语句,也非常遗憾,0.5秒。
综上:如果对于有where 条件,又想走索引用limit的,必须设计一个索引,将where 放第一位,limit用到的主键放第2位,而且只能select 主键!
完美解决了分页问题了。可以快速返回id就有希望优化limit , 按这样的逻辑,百万级的limit 应该在0.0x秒就可以分完。看来mysql 语句的优化和索引时非常重要的!
推薦:《mysql教學》
以上是MySQL百萬級資料量分頁查詢方法及其最佳化建議的詳細內容。更多資訊請關注PHP中文網其他相關文章!

MySQL適合初學者學習數據庫技能。 1.安裝MySQL服務器和客戶端工具。 2.理解基本SQL查詢,如SELECT。 3.掌握數據操作:創建表、插入、更新、刪除數據。 4.學習高級技巧:子查詢和窗口函數。 5.調試和優化:檢查語法、使用索引、避免SELECT*,並使用LIMIT。

MySQL通過表結構和SQL查詢高效管理結構化數據,並通過外鍵實現表間關係。 1.創建表時定義數據格式和類型。 2.使用外鍵建立表間關係。 3.通過索引和查詢優化提高性能。 4.定期備份和監控數據庫確保數據安全和性能優化。

MySQL是一個開源的關係型數據庫管理系統,廣泛應用於Web開發。它的關鍵特性包括:1.支持多種存儲引擎,如InnoDB和MyISAM,適用於不同場景;2.提供主從復制功能,利於負載均衡和數據備份;3.通過查詢優化和索引使用提高查詢效率。

SQL用於與MySQL數據庫交互,實現數據的增、刪、改、查及數據庫設計。 1)SQL通過SELECT、INSERT、UPDATE、DELETE語句進行數據操作;2)使用CREATE、ALTER、DROP語句進行數據庫設計和管理;3)複雜查詢和數據分析通過SQL實現,提升業務決策效率。

MySQL的基本操作包括創建數據庫、表格,及使用SQL進行數據的CRUD操作。 1.創建數據庫:CREATEDATABASEmy_first_db;2.創建表格:CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY,titleVARCHAR(100)NOTNULL,authorVARCHAR(100)NOTNULL,published_yearINT);3.插入數據:INSERTINTObooks(title,author,published_year)VA

MySQL在Web應用中的主要作用是存儲和管理數據。 1.MySQL高效處理用戶信息、產品目錄和交易記錄等數據。 2.通過SQL查詢,開發者能從數據庫提取信息生成動態內容。 3.MySQL基於客戶端-服務器模型工作,確保查詢速度可接受。

構建MySQL數據庫的步驟包括:1.創建數據庫和表,2.插入數據,3.進行查詢。首先,使用CREATEDATABASE和CREATETABLE語句創建數據庫和表,然後用INSERTINTO語句插入數據,最後用SELECT語句查詢數據。

MySQL適合初學者,因為它易用且功能強大。 1.MySQL是關係型數據庫,使用SQL進行CRUD操作。 2.安裝簡單,需配置root用戶密碼。 3.使用INSERT、UPDATE、DELETE、SELECT進行數據操作。 4.複雜查詢可使用ORDERBY、WHERE和JOIN。 5.調試需檢查語法,使用EXPLAIN分析查詢。 6.優化建議包括使用索引、選擇合適數據類型和良好編程習慣。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

Dreamweaver Mac版
視覺化網頁開發工具

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。