冒泡排序的時間複雜度:最好情況是“O(n)”,最壞情況是“O(n2)”。快速排序的時間複雜度:最好情況是“O(nlogn)”,最壞情況是“O(n2)”。堆排序的時間複雜度是「O(nlogn)」。
本教學操作環境:windows7系統、Dell G3電腦。
時間複雜度
最好的情況:陣列本身是順序的,外層迴圈遍歷一次就完成O(n)
最壞的情況:數組本身是逆序的,內外層遍歷O(n2)
#空間複雜度
開啟一個空間交換順序O(1)
##穩定性
穩定,因為if判斷不成立,就不會交換順序,不會交換相同元素
複雜度是O(n2)。
氣泡升至表面一樣,冒泡排序因此得名。
[array[index1], array[index2]] = [array[index2], array[index1]];具體實作:
function bubbleSort(arr) { for (let i = 0; i < arr.length; i++) {//外循环(行{2})会从数组的第一位迭代 至最后一位,它控制了在数组中经过多少轮排序 for (let j = 0; j < arr.length - i; j++) {//内循环将从第一位迭代至length - i位,因为后i位已经是排好序的,不用重新迭代 if (arr[j] > arr[j + 1]) {//如果前一位大于后一位 [arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];//交换位置 } } } return arr; }快速排序
時間複雜度 最好的情況:每個base值都剛好平分整個數組,
O(nlogn) 最糟的情況:每一次base值都是陣列中的最大/最小值,
O(n2)
空間複雜度# 快速排序是遞歸的,需要藉助棧來保存每一層遞歸的呼叫訊息,所以空間複雜度和遞歸樹的深度一致
最好的情況:每一次base值都剛好平分整個數組,遞歸樹的深度
O(logn) 最糟的情況:每個base值都是陣列中的最大/最小值,遞迴樹的深度
O(n)
穩定性 快速排序是
不穩定的,因為可能會交換相同的關鍵字。
快速排序是遞歸的,
特殊情況:left>right,直接退出。
步驟:
(1) 首先,從陣列中選取中間一項作為主元base,一般取第一個值。
(2) 建立兩個指標,左邊一個指向數組第一個項,右邊一個指向數組最後一個項。 移動右邊指標直到找到一個比主元小的元素,接著,移動左指標直到我們找到一個比主元大的元素,然後交換它們 ,重複這個過程,直到左邊指針遇見了右指針。這個過程將使得比主元小的值都排在主元之前,而比主元大的值都排在主元之後。這一步叫作劃分運算。
(3)然後交換主元和指標停下來的位置的元素(等於說是把這個元素歸位,這個元素左邊的都比他小,右邊的都比他大,這個位置就是他最終的位置)
(4) 接著,演算法對劃分後的小數組(較主元小的值組成的子數組,以及較主由元大的值組成的子數組)重複之前的兩個步驟(遞歸方法),
遞歸的出口為left/right=i,也就是:
left>i-1 / i+1>right此時,子數組數組已排序完成。 歸位示意圖:
function quicksort(arr, left, right) { if (left > right) { return; } var i = left, j = right, base = arr[left]; //基准总是取序列开头的元素 // var [base, i, j] = [arr[left], left, right]; //以left指针元素为base while (i != j) { //i=j,两个指针相遇时,一次排序完成,跳出循环 // 因为每次大循环里面的操作都会改变i和j的值,所以每次循环/操作前都要判断是否满足i<j>= base) { //寻找小于base的右指针元素a,跳出循环,否则左移一位 j--; } while (i 參考:https://www.cnblogs.com/venoral/p/5180439. html<p></p> <h2>堆排序<strong></strong> </h2>堆的概念<p></p> <ul> <li>堆是一个完全二叉树。</li> <li>完全二叉树: 二叉树除开最后一层,其他层结点数都达到最大,最后一层的所有结点都集中在左边(左边结点排列满的情况下,右边才能缺失结点)。</li> <li>大顶堆:根结点为最大值,每个结点的值大于或等于其孩子结点的值。</li> <li>小顶堆:根结点为最小值,每个结点的值小于或等于其孩子结点的值。</li> <li>堆的存储: 堆由数组来实现,相当于对二叉树做层序遍历。如下图:<br><img src="https://img.php.cn/upload/article/000/000/024/70c3cf834e3b712407f805e79c392ea0-1.png" alt="冒泡排序、快速排序和堆排序的時間複雜度是多少"><br><img src="https://img.php.cn/upload/article/000/000/024/70c3cf834e3b712407f805e79c392ea0-2.png" alt="冒泡排序、快速排序和堆排序的時間複雜度是多少"> </li> </ul> <p><strong>时间复杂度</strong><br> 总时间为<code>建堆时间</code>+<code>n次调整堆</code> —— <code>O(n)+O(nlogn)=O(nlogn)</code><br><code>建堆时间</code>:从最后一个非叶子节点遍历到根节点,复杂度为<code>O(n)</code><br><code>n次调整堆</code>:每一次调整堆最长的路径是从树的根节点到叶子结点,也就是树的高度<code>logn</code>,所以每一次调整时间复杂度是<code>O(logn)</code>,一共是<code>O(nlogn)</code></p> <p><strong>空间复杂度</strong><br> 堆排序只需要在交换元素的时候申请一个空间暂存元素,其他操作都是在原数组操作,空间复杂度为<code>O(1)</code></p> <p><strong>稳定性</strong><br> 堆排序是<code>不稳定</code>的,因为可能会交换相同的子结点。</p> <p><strong>步骤一:建堆</strong></p> <ul> <li>以升序遍历为例子,需要先将将初始二叉树转换成大顶堆,要求满足:<code>树中任一非叶子结点大于其左右孩子</code>。</li> <li>实质上是调整数组元素的位置,不断比较,做交换操作。</li> <li>找到第一个非叶子结点——<code>Math.floor(arr.length / 2 - 1)</code>,从后往前依次遍历</li> <li>对每一个结点,检查结点和子结点的大小关系,调整成大根堆</li> </ul><pre class="brush:js;toolbar:false;">// 建立大顶堆 function buildHeap(arr) { //从最后一个非叶子节点开始,向前遍历, for (let i = Math.floor(arr.length / 2 - 1); i >= 0; i--) { headAdjust(arr, i, arr.length); //对每一个节点都调整堆,使其满足大顶堆规则 } }
步骤二:调整指定结点形成大根堆
childMax
指针指向child最大值节点,初始值为2 * cur + 1
,指向左节点length
),进入循环,递归调整所有节点位置,直到没有左节点
为止(cur
指向一个叶结点为止),跳出循环,遍历结束cur
和childMax
指向子结点,继续循环判断。//从输入节点处调整堆 function headAdjust(arr, cur, len) { let intialCur = arr[cur]; //存放最初始的 let childMax = 2 * cur + 1; //指向子树中较大的位置,初始值为左子树的索引 //子树存在(索引没超过数组长度)而且子树值大于根时,此时不符合大顶堆结构,进入循环,调整堆的结构 while (childMax < len) { //判断左右子树大小,如果右子树更大,而且右子树存在,childMax指针指向右子树 if (arr[childMax] < arr[childMax + 1] && childMax + 1 < len) childMax++; //子树值小于根节点,不需要调整,退出循环 if (arr[childMax] < arr[cur]) break; //子树值大于根节点,需要调整,先交换根节点和子节点 swap(arr, childMax, cur); cur = childMax; //根节点指针指向子节点,检查子节点是否满足大顶堆规则 childMax = 2 * cur + 1; //子节点指针指向新的子节点 } }
步骤三:利用堆进行排序
a[0]
和当前元素a[i]
的位置,将最大值依次放入数组末尾。根节点~i-1
个节点(数组长度为i
),重新生成大顶堆// 堆排序 function heapSort(arr) { if (arr.length <= 1) return arr; //构建大顶堆 buildHeap(arr); //从后往前遍历, for (let i = arr.length - 1; i >= 0; i--) { swap(arr, i, 0); //交换最后位置和第一个位置(堆顶最大值)的位置 headAdjust(arr, 0, i); //调整根节点~i-1个节点,重新生成大顶堆 } return arr; }
完整代码:
// 交换数组元素 function swap(a, i, j) { [a[i], a[j]] = [a[j], a[i]]; } //从输入节点处调整堆 function headAdjust(arr, cur, len) { let intialCur = arr[cur]; //存放最初始的 let childMax = 2 * cur + 1; //指向子树中较大的位置,初始值为左子树的索引 //子树存在(索引没超过数组长度)而且子树值大于根时,此时不符合大顶堆结构,进入循环,调整堆的结构 while (childMax < len) { //判断左右子树大小,如果右子树更大,而且右子树存在,childMax指针指向右子树 if (arr[childMax] < arr[childMax + 1] && childMax + 1 < len) childMax++; //子树值小于根节点,不需要调整,退出循环 if (arr[childMax] < arr[cur]) break; //子树值大于根节点,需要调整,先交换根节点和子节点 swap(arr, childMax, cur); cur = childMax; //根节点指针指向子节点,检查子节点是否满足大顶堆规则 childMax = 2 * cur + 1; //子节点指针指向新的子节点 } } // 建立大顶堆 function buildHeap(arr) { //从最后一个非叶子节点开始,向前遍历, for (let i = Math.floor(arr.length / 2 - 1); i >= 0; i--) { headAdjust(arr, i, arr.length); //对每一个节点都调整堆,使其满足大顶堆规则 } } // 堆排序 function heapSort(arr) { if (arr.length <= 1) return arr; //构建大顶堆 buildHeap(arr); //从后往前遍历, for (let i = arr.length - 1; i >= 0; i--) { swap(arr, i, 0); //交换最后位置和第一个位置(堆顶最大值)的位置 headAdjust(arr, 0, i); //调整根节点~i-1个节点,重新生成大顶堆 } return arr; }
更多编程相关知识,请访问:编程视频!!
以上是冒泡排序、快速排序和堆排序的時間複雜度是多少的詳細內容。更多資訊請關注PHP中文網其他相關文章!