下面由golang教學欄位介紹給大家Golang連結池的幾個實作案例,希望對需要的朋友有幫助!
因為TCP的三次握手等等原因,建立一個連線是一件成本比較高的行為。所以在一個需要多次與特定實體互動的程式中,就需要維持一個連結池,裡面有可以重複使用的連結可供重複使用。
而維持一個連接池,最基本的要求就是要做到:thread safe(線程安全),尤其是在Golang這種特性是goroutine的語言中。
type Pool struct { m sync.Mutex //保证多个goroutine访问时候,closed的线程安全 res chan io.Closer //连接存储的chan factory func() (io.Closer,error) //新建连接的工厂方法 closed bool //连接池关闭标志 }
這個簡單的連線池,我們利用chan來儲存池裡的連線。而新建結構體的方法也比較簡單:
func New(fn func() (io.Closer, error), size uint) (*Pool, error) { if size <= 0 { return nil, errors.New("size的值太小了。") } return &Pool{ factory: fn, res: make(chan io.Closer, size), }, nil }
只需要提供對應的工廠函數和連接池的大小就可以了。
那我們要怎麼從中取得資源呢?因為我們內部儲存連接的結構是chan,所以只需要簡單的select就可以保證線程安全:
//从资源池里获取一个资源 func (p *Pool) Acquire() (io.Closer,error) { select { case r,ok := <-p.res: log.Println("Acquire:共享资源") if !ok { return nil,ErrPoolClosed } return r,nil default: log.Println("Acquire:新生成资源") return p.factory() } }
我們先從連接池的res這個chan裡面獲取,如果沒有的話我們就利用我們早已經準備好的工廠函數進行構造連接。同時我們在從res取得連線的時候利用ok先確定了這個連線池是否已經關閉。如果已經關閉的話我們就回傳早已經準備好的連線已關閉錯誤。
那麼既然提到關閉連線池,我們是怎麼樣關閉連線池的呢?
//关闭资源池,释放资源 func (p *Pool) Close() { p.m.Lock() defer p.m.Unlock() if p.closed { return } p.closed = true //关闭通道,不让写入了 close(p.res) //关闭通道里的资源 for r:=range p.res { r.Close() } }
這邊我們需要先進行p.m.Lock()*上鎖操作,這麼做是因為我們需要對結構體裡面的*closed進行讀寫。需要先把這個標誌位元設定好後,關掉res這個chan,讓Acquire方法無法再取得新的連線。我們再對res這個chan裡面的連接進行Close操作。
釋放連線首先得有個前提,就是連線池還沒關閉。如果連接池已經關閉再往res裡面送連接的話就好觸發panic。
func (p *Pool) Release(r io.Closer){ //保证该操作和Close方法的操作是安全的 p.m.Lock() defer p.m.Unlock() //资源池都关闭了,就省这一个没有释放的资源了,释放即可 if p.closed { r.Close() return } select { case p.res <- r: log.Println("资源释放到池子里了") default: log.Println("资源池满了,释放这个资源吧") r.Close() } }
以上就是一個簡單且執行緒安全的連線池實作方式了。我們可以看到的是,現在連接池雖然已經實現了,但是還有幾個小缺點:
#我們對連接最大的數量沒有限制,如果線程池空的話都我們預設就直接新建一個連線回傳了。一旦並發量高的話將會不斷新建連接,很容易(尤其是MySQL)造成
too many connections
的報錯發生。既然我們需要保證最大可取得連線數量,那麼我們就不希望數量定的太死。希望空閒的時候可以維護一定的空閒連線數量idleNum,但是又希望我們能限制最大可取得連線數量maxNum。
第一種情況是併發過多的情況,那麼如果並發量過少呢?現在我們在新建一個連線並且歸還後,我們很長一段時間不再使用這個連線。那麼這個連結很有可能在幾個小時甚至更長之前就已經建立的了。長時間閒置的連結我們並沒有辦法保證它的可用性。便有可能我們下次取得的連線是已經失效的連線。
那麼我們可以從已經成熟使用的MySQL連線池庫和Redis連線池庫中看看,它們是怎麼解決這些問題的。
Golang的連線池實作在標準函式庫 database/sql/sql.go
下。當我們運行:
db, err := sql.Open("mysql", "xxxx")
的時候,就會開啟一個連線池。我們可以看看返回的db的結構體:
type DB struct { waitDuration int64 // Total time waited for new connections. mu sync.Mutex // protects following fields freeConn []*driverConn connRequests map[uint64]chan connRequest nextRequest uint64 // Next key to use in connRequests. numOpen int // number of opened and pending open connections // Used to signal the need for new connections // a goroutine running connectionOpener() reads on this chan and // maybeOpenNewConnections sends on the chan (one send per needed connection) // It is closed during db.Close(). The close tells the connectionOpener // goroutine to exit. openerCh chan struct{} closed bool maxIdle int // zero means defaultMaxIdleConns; negative means 0 maxOpen int // <= 0 means unlimited maxLifetime time.Duration // maximum amount of time a connection may be reused cleanerCh chan struct{} waitCount int64 // Total number of connections waited for. maxIdleClosed int64 // Total number of connections closed due to idle. maxLifetimeClosed int64 // Total number of connections closed due to max free limit. }
上面省去了一些暫時不需要關注的field。我們可以看的,DB這個連接池內部儲存連接的結構freeConn,並不是我們之前使用的chan,而是[]*driverConn,一個連接切片。同時我們也可以看到,裡面有maxIdle等相關變數來控制空閒連線數量。值得注意的是,DB的初始化函數Open函數並沒有新資料庫連線。而新建連接在哪個函數呢?我們可以在Query方法一路往回找,我們可以看到這個函數: func(db*DB)conn(ctx context.Context,strategy connReuseStrategy)(*driverConn,error)
。而我們從連接池取得連線的方法,就從這裡開始:
// conn returns a newly-opened or cached *driverConn. func (db *DB) conn(ctx context.Context, strategy connReuseStrategy) (*driverConn, error) { // 先判断db是否已经关闭。 db.mu.Lock() if db.closed { db.mu.Unlock() return nil, errDBClosed } // 注意检测context是否已经被超时等原因被取消。 select { default: case <-ctx.Done(): db.mu.Unlock() return nil, ctx.Err() } lifetime := db.maxLifetime // 这边如果在freeConn这个切片有空闲连接的话,就left pop一个出列。注意的是,这边因为是切片操作,所以需要前面需要加锁且获取后进行解锁操作。同时判断返回的连接是否已经过期。 numFree := len(db.freeConn) if strategy == cachedOrNewConn && numFree > 0 { conn := db.freeConn[0] copy(db.freeConn, db.freeConn[1:]) db.freeConn = db.freeConn[:numFree-1] conn.inUse = true db.mu.Unlock() if conn.expired(lifetime) { conn.Close() return nil, driver.ErrBadConn } // Lock around reading lastErr to ensure the session resetter finished. conn.Lock() err := conn.lastErr conn.Unlock() if err == driver.ErrBadConn { conn.Close() return nil, driver.ErrBadConn } return conn, nil } // 这边就是等候获取连接的重点了。当空闲的连接为空的时候,这边将会新建一个request(的等待连接 的请求)并且开始等待 if db.maxOpen > 0 && db.numOpen >= db.maxOpen { // 下面的动作相当于往connRequests这个map插入自己的号码牌。 // 插入号码牌之后这边就不需要阻塞等待继续往下走逻辑。 req := make(chan connRequest, 1) reqKey := db.nextRequestKeyLocked() db.connRequests[reqKey] = req db.waitCount++ db.mu.Unlock() waitStart := time.Now() // Timeout the connection request with the context. select { case <-ctx.Done(): // context取消操作的时候,记得从connRequests这个map取走自己的号码牌。 db.mu.Lock() delete(db.connRequests, reqKey) db.mu.Unlock() atomic.AddInt64(&db.waitDuration, int64(time.Since(waitStart))) select { default: case ret, ok := <-req: // 这边值得注意了,因为现在已经被context取消了。但是刚刚放了自己的号码牌进去排队里面。意思是说不定已经发了连接了,所以得注意归还! if ok && ret.conn != nil { db.putConn(ret.conn, ret.err, false) } } return nil, ctx.Err() case ret, ok := <-req: // 下面是已经获得连接后的操作了。检测一下获得连接的状况。因为有可能已经过期了等等。 atomic.AddInt64(&db.waitDuration, int64(time.Since(waitStart))) if !ok { return nil, errDBClosed } if ret.err == nil && ret.conn.expired(lifetime) { ret.conn.Close() return nil, driver.ErrBadConn } if ret.conn == nil { return nil, ret.err } ret.conn.Lock() err := ret.conn.lastErr ret.conn.Unlock() if err == driver.ErrBadConn { ret.conn.Close() return nil, driver.ErrBadConn } return ret.conn, ret.err } } // 下面就是如果上面说的限制情况不存在,可以创建先连接时候,要做的创建连接操作了。 db.numOpen++ // optimistically db.mu.Unlock() ci, err := db.connector.Connect(ctx) if err != nil { db.mu.Lock() db.numOpen-- // correct for earlier optimism db.maybeOpenNewConnections() db.mu.Unlock() return nil, err } db.mu.Lock() dc := &driverConn{ db: db, createdAt: nowFunc(), ci: ci, inUse: true, } db.addDepLocked(dc, dc) db.mu.Unlock() return dc, nil } 复制代码
简单来说,DB结构体除了用的是slice来存储连接,还加了一个类似排队机制的connRequests来解决获取等待连接的过程。同时在判断连接健康性都有很好的兼顾。那么既然有了排队机制,归还连接的时候是怎么做的呢?
我们可以直接找到 func(db*DB)putConnDBLocked(dc*driverConn,err error)bool
这个方法。就像注释说的,这个方法主要的目的是:
Satisfy a connRequest or put the driverConn in the idle pool and return true or return false.
我们主要来看看里面重点那几行:
... // 如果已经超过最大打开数量了,就不需要在回归pool了 if db.maxOpen > 0 && db.numOpen > db.maxOpen { return false } // 这边是重点了,基本来说就是从connRequest这个map里面随机抽一个在排队等着的请求。取出来后发给他。就不用归还池子了。 if c := len(db.connRequests); c > 0 { var req chan connRequest var reqKey uint64 for reqKey, req = range db.connRequests { break } delete(db.connRequests, reqKey) // 删除这个在排队的请求。 if err == nil { dc.inUse = true } // 把连接给这个正在排队的连接。 req <- connRequest{ conn: dc, err: err, } return true } else if err == nil && !db.closed { // 既然没人排队,就看看到了最大连接数目没有。没到就归还给freeConn。 if db.maxIdleConnsLocked() > len(db.freeConn) { db.freeConn = append(db.freeConn, dc) db.startCleanerLocked() return true } db.maxIdleClosed++ } ...
我们可以看到,当归还连接时候,如果有在排队轮候的请求就不归还给池子直接发给在轮候的人了。
现在基本就解决前面说的小问题了。不会出现连接太多导致无法控制too many connections的情况。也很好了维持了连接池的最小数量。同时也做了相关对于连接健康性的检查操作。
值得注意的是,作为标准库的代码,相关注释和代码都非常完美,真的可以看的神清气爽。
这个Golang实现的Redis客户端,是怎么实现连接池的。这边的思路非常奇妙,还是能学习到不少好思路。当然了,由于代码注释比较少,啃起来第一下还是有点迷糊的。相关代码地址在https://github.com/go-redis/redis/blob/master/internal/pool/pool.go 可以看到。
而它的连接池结构如下
type ConnPool struct { ... queue chan struct{} connsMu sync.Mutex conns []*Conn idleConns []*Conn poolSize int idleConnsLen int stats Stats _closed uint32 // atomic closedCh chan struct{} }
我们可以看到里面存储连接的结构还是slice。但是我们可以重点看看 queue
, conns
, idleConns
这几个变量,后面会提及到。但是值得注意的是!我们可以看到,这里有两个[]*Conn结构:conns
、 idleConns
,那么问题来了:
到底连接存在哪里?
我们先从新建连接池连接开始看:
func NewConnPool(opt *Options) *ConnPool { .... p.checkMinIdleConns() if opt.IdleTimeout > 0 && opt.IdleCheckFrequency > 0 { go p.reaper(opt.IdleCheckFrequency) } .... }
初始化连接池的函数有个和前面两个不同的地方。
checkMinIdleConns
方法,在连接池初始化的时候就会往连接池填满空闲的连接。
go p.reaper(opt.IdleCheckFrequency)
则会在初始化连接池的时候就会起一个go程,周期性的淘汰连接池里面要被淘汰的连接。
func (p *ConnPool) Get(ctx context.Context) (*Conn, error) { if p.closed() { return nil, ErrClosed } //这边和前面sql获取连接函数的流程不同。sql是先看看连接池有没有空闲连接,有的话先获取不到再排队。这边是直接先排队获取令牌,排队函数后面会分析。 err := p.waitTurn(ctx) if err != nil { return nil, err } //前面没出error的话,就已经排队轮候到了。接下来就是获取的流程。 for { p.connsMu.Lock() //从空闲连接里面先获取一个空闲连接。 cn := p.popIdle() p.connsMu.Unlock() if cn == nil { // 没有空闲连接时候直接跳出循环。 break } // 判断是否已经过时,是的话close掉了然后继续取出。 if p.isStaleConn(cn) { _ = p.CloseConn(cn) continue } atomic.AddUint32(&p.stats.Hits, 1) return cn, nil } atomic.AddUint32(&p.stats.Misses, 1) // 如果没有空闲连接的话,这边就直接新建连接了。 newcn, err := p.newConn(ctx, true) if err != nil { // 归还令牌。 p.freeTurn() return nil, err } return newcn, nil }
我们可以试着回答开头那个问题:连接到底存在哪里?答案是从 cn:=p.popIdle()
这句话可以看出,获取连接这个动作,是从 idleConns
里面获取的,而里面的函数也证明了这一点。同时我的理解是:
sql的排队意味着我对连接池申请连接后,把自己的编号告诉连接池。连接那边一看到有空闲了,就叫我的号。我答应了一声,然后连接池就直接给个连接给我。我如果不归还,连接池就一直不叫下一个号。
redis这边的意思是,我去和连接池申请的不是连接而是令牌。我就一直排队等着,连接池给我令牌了,我才去仓库里面找空闲连接或者自己新建一个连接。用完了连接除了归还连接外,还得归还令牌。当然了,如果我自己新建连接出错了,我哪怕拿不到连接回家,我也得把令牌给回连接池,不然连接池的令牌数少了,最大连接数也会变小。
而:
func (p *ConnPool) freeTurn() { <-p.queue } func (p *ConnPool) waitTurn(ctx context.Context) error { ... case p.queue <- struct{}{}: return nil ... }
就是在靠queue这个chan来维持令牌数量。
那么 conns
的作用是什么呢?我们可以来看看新建连接这个函数:
func (p *ConnPool) newConn(ctx context.Context, pooled bool) (*Conn, error) { cn, err := p.dialConn(ctx, pooled) if err != nil { return nil, err } p.connsMu.Lock() p.conns = append(p.conns, cn) if pooled { // 如果连接池满了,会在后面移除。 if p.poolSize >= p.opt.PoolSize { cn.pooled = false } else { p.poolSize++ } } p.connsMu.Unlock() return cn, nil }
基本逻辑出来了。就是如果新建连接的话,我并不会直接放在 idleConns
里面,而是先放 conns
里面。同时先看池子满了没有。满的话后面归还的时候会标记,后面会删除。那么这个后面会删除,指的是什么时候呢?那就是下面说的归还连接的时候了。
func (p *ConnPool) Put(cn *Conn) { if cn.rd.Buffered() > 0 { internal.Logger.Printf("Conn has unread data") p.Remove(cn, BadConnError{}) return } //这就是我们刚刚说的后面了,前面标记过不要入池的,这边就删除了。当然了,里面也会进行freeTurn操作。 if !cn.pooled { p.Remove(cn, nil) return } p.connsMu.Lock() p.idleConns = append(p.idleConns, cn) p.idleConnsLen++ p.connsMu.Unlock() //我们可以看到很明显的这个归还号码牌的动作。 p.freeTurn() }
其实归还的过程,就是从 conns
转移到 idleConns
的过程。当然了,如果新建这个连接时候发现已经 超卖
了,后面归还时候就不转移,直接删除了。
等等,上面的逻辑似乎有点不对?我们来理一下获取连接流程:
先 waitTurn
,拿到令牌。而令牌数量是根据pool里面的 queue
决定的。
拿到令牌了,去库房 idleConns
里面拿空闲的连接。没有的话就自己 newConn
一个,并且把他记录到 conns
里面。
用完了,就叫 put
歸還:也就是從 conns
轉移到 idleConns
。歸還的時候就檢查在 newConn
時候是不是已經做了超賣標記了。是的話就不轉移到 idleConns
。
我當時已經疑惑了好久,既然始終需要獲得令牌才能連接,那麼令牌數量是定的。為什麼還會超賣呢?翻了一下原始碼,我的答案是:
雖然Get
方法取得連線是newConn
這個私人方法,受到令牌管制導致不會出現超賣。但這個方法接受傳參:pooledbool
。所以我猜是擔心其他人呼叫這個方法時候,不管三七二十一就傳了true,導致poolSize越來越大。
總的來說,redis這個連接池的連接數控制,還是在
queue
這個我稱為令牌的chan進行操作。
上面可以看到,連接池的最基本的保證,就是取得連線時候的執行緒安全性。但在實現許多額外特性時候卻又從不同角度來實現。還是非常有趣的。但不管儲存結構是用chan還是還是slice,都可以很好的實現這一點。如果像sql或redis那樣用slice來儲存連接,就得維護一個結構來表示排隊等候的效果。
本文作者:Xiao淩求個好運氣日期:2020-02-28 原文鏈接:https://juejin.im/post/5e58e3b7f265da57537eb7ed
以上是關於Golang連線池的幾個實作案例的詳細內容。更多資訊請關注PHP中文網其他相關文章!