首頁  >  文章  >  後端開發  >  迅速掌握Python中的Hook鉤子函數

迅速掌握Python中的Hook鉤子函數

coldplay.xixi
coldplay.xixi轉載
2020-12-11 17:11:218348瀏覽

Python教學欄位介紹Python中的Hook鉤子函數

迅速掌握Python中的Hook鉤子函數

大量免費學習推薦,敬請訪問python教學(影片)

1. 什麼是Hook

常常會聽到鉤子函數(hook function)這個概念,最近在看目標偵測開源框架mmdetection,裡面也出現大量Hook的程式設計方式,那到底什麼是hook? hook的作用是什麼?

  • what is hook ?鉤子hook,顧名思義,可以理解是一個掛鉤,作用是有需要的時候掛一個東西上去。具體的解釋是:鉤子函數是把我們自己實現的hook函數在某個時刻掛接到目標掛載點。

  • hook函數的作用舉個例子,hook的概念在windows桌面軟體開發很常見,特別是各種事件觸發的機制; 例如C 的MFC程式中,要監聽滑鼠左鍵按下的時間,MFC提供了一個onLeftKeyDown的鉤子函數。很顯然,MFC框架並沒有為我們實現onLeftKeyDown具體的操作,只是為我們提供一個鉤子,當我們需要處理的時候,只要去重寫這個函數,把我們需要操作掛載在這個鉤子裡,如果我們不掛載,MFC事件觸發機制中執行的就是空的操作。

從上面可知

  • hook函數是程式中預先定義好的函數,這個函數處於原始程式流程當中(揭露一個鉤子出來)

  • 我們需要再在有流程中鉤子定義的函數塊中實現某個具體的細節,需要把我們的實現,掛接或註冊(register)到鉤子裡,使得hook函數對目標可用

  • hook 是一種程式設計機制,和具體的語言沒有直接的關係

  • ##如果從設計模式上看,hook模式是模板方法的擴展

  • 鉤子只有註冊的時候,才會使用,所以原有程式的流程中,沒有註冊或掛載時,執行的是空(即沒有執行任何操作)

本文用python來解釋hook的實作方式,並展示在開源專案中hook的應用案例。 hook函數和我們常聽到另一個名稱:回呼函數(callback function)功能是類似的,可以按照同種模式來理解。

迅速掌握Python中的Hook鉤子函數

2. hook實作範例

據我所知,hook函數最常使用在某種流程處理當中。這個流程往往有很多步驟。 hook函數常常掛載在這些步驟中,為增加額外的一些操作,提供彈性。

下面舉一個簡單的例子,這個例子的目的是實作一個通用往佇列中插入內容的功能。流程步驟有2個

  • 需要再插入佇列前,對資料進行篩選

    input_filter_fn

  • 插入佇列

    insert_queue

  • class ContentStash(object):
        """
        content stash for online operation
        pipeline is
        1. input_filter: filter some contents, no use to user
        2. insert_queue(redis or other broker): insert useful content to queue
        """
    
        def __init__(self):
            self.input_filter_fn = None
            self.broker = []
    
        def register_input_filter_hook(self, input_filter_fn):
            """
            register input filter function, parameter is content dict
            Args:
                input_filter_fn: input filter function
    
            Returns:
    
            """
            self.input_filter_fn = input_filter_fn
    
        def insert_queue(self, content):
            """
            insert content to queue
            Args:
                content: dict
    
            Returns:
    
            """
            self.broker.append(content)
    
        def input_pipeline(self, content, use=False):
            """
            pipeline of input for content stash
            Args:
                use: is use, defaul False
                content: dict
    
            Returns:
    
            """
            if not use:
                return
    
            # input filter
            if self.input_filter_fn:
                _filter = self.input_filter_fn(content)
                
            # insert to queue
            if not _filter:
                self.insert_queue(content)
    
    
    
    # test
    ## 实现一个你所需要的钩子实现:比如如果content 包含time就过滤掉,否则插入队列
    def input_filter_hook(content):
        """
        test input filter hook
        Args:
            content: dict
    
        Returns: None or content
    
        """
        if content.get('time') is None:
            return
        else:
            return content
    
    
    # 原有程序
    content = {'filename': 'test.jpg', 'b64_file': "#test", 'data': {"result": "cat", "probility": 0.9}}
    content_stash = ContentStash('audit', work_dir='')
    
    # 挂上钩子函数, 可以有各种不同钩子函数的实现,但是要主要函数输入输出必须保持原有程序中一致,比如这里是content
    content_stash.register_input_filter_hook(input_filter_hook)
    
    # 执行流程
    content_stash.input_pipeline(content)
3. hook在開源框架中的應用

3.1 keras

在深度學習訓練流程中,hook函數體現的淋漓盡致。

一個訓練過程(不包括資料準備),會輪詢多次訓練集,每次稱為一個epoch,每個epoch又分成多個batch來訓練。流程先後拆解成:

  • 開始訓練

  • #訓練一個epoch前

  • ##訓練一個batch前
  • 訓練一個batch後
  • #訓練一個epoch後
  • 評估驗證集
  • 結束訓練
  • 這些步驟是穿插在訓練一個batch資料的過程中,這些可以理解成是鉤子函數,我們可能需要在這些鉤子函數中實現一些客製化的東西,例如在
訓練一個epoch後

我們要保存下訓練的模型,在結束訓練時用最好的模型執行下測試集的效果等等。 keras中是透過各種回呼函數來實現鉤子hook功能的。這裡放一個callback的父類,定制時只要繼承這個父類,實作你過關注的鉤子就可以了。

@keras_export('keras.callbacks.Callback')
class Callback(object):
  """Abstract base class used to build new callbacks.

  Attributes:
      params: Dict. Training parameters
          (eg. verbosity, batch size, number of epochs...).
      model: Instance of `keras.models.Model`.
          Reference of the model being trained.

  The `logs` dictionary that callback methods
  take as argument will contain keys for quantities relevant to
  the current batch or epoch (see method-specific docstrings).
  """

  def __init__(self):
    self.validation_data = None  # pylint: disable=g-missing-from-attributes
    self.model = None
    # Whether this Callback should only run on the chief worker in a
    # Multi-Worker setting.
    # TODO(omalleyt): Make this attr public once solution is stable.
    self._chief_worker_only = None
    self._supports_tf_logs = False

  def set_params(self, params):
    self.params = params

  def set_model(self, model):
    self.model = model

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_batch_begin(self, batch, logs=None):
    """A backwards compatibility alias for `on_train_batch_begin`."""

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_batch_end(self, batch, logs=None):
    """A backwards compatibility alias for `on_train_batch_end`."""

  @doc_controls.for_subclass_implementers
  def on_epoch_begin(self, epoch, logs=None):
    """Called at the start of an epoch.

    Subclasses should override for any actions to run. This function should only
    be called during TRAIN mode.

    Arguments:
        epoch: Integer, index of epoch.
        logs: Dict. Currently no data is passed to this argument for this method
          but that may change in the future.
    """

  @doc_controls.for_subclass_implementers
  def on_epoch_end(self, epoch, logs=None):
    """Called at the end of an epoch.

    Subclasses should override for any actions to run. This function should only
    be called during TRAIN mode.

    Arguments:
        epoch: Integer, index of epoch.
        logs: Dict, metric results for this training epoch, and for the
          validation epoch if validation is performed. Validation result keys
          are prefixed with `val_`.
    """

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_train_batch_begin(self, batch, logs=None):
    """Called at the beginning of a training batch in `fit` methods.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict, contains the return value of `model.train_step`. Typically,
          the values of the `Model`'s metrics are returned.  Example:
          `{'loss': 0.2, 'accuracy': 0.7}`.
    """
    # For backwards compatibility.
    self.on_batch_begin(batch, logs=logs)

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_train_batch_end(self, batch, logs=None):
    """Called at the end of a training batch in `fit` methods.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict. Aggregated metric results up until this batch.
    """
    # For backwards compatibility.
    self.on_batch_end(batch, logs=logs)

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_test_batch_begin(self, batch, logs=None):
    """Called at the beginning of a batch in `evaluate` methods.

    Also called at the beginning of a validation batch in the `fit`
    methods, if validation data is provided.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict, contains the return value of `model.test_step`. Typically,
          the values of the `Model`'s metrics are returned.  Example:
          `{'loss': 0.2, 'accuracy': 0.7}`.
    """

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_test_batch_end(self, batch, logs=None):
    """Called at the end of a batch in `evaluate` methods.

    Also called at the end of a validation batch in the `fit`
    methods, if validation data is provided.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict. Aggregated metric results up until this batch.
    """

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_predict_batch_begin(self, batch, logs=None):
    """Called at the beginning of a batch in `predict` methods.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict, contains the return value of `model.predict_step`,
          it typically returns a dict with a key 'outputs' containing
          the model's outputs.
    """

  @doc_controls.for_subclass_implementers
  @generic_utils.default
  def on_predict_batch_end(self, batch, logs=None):
    """Called at the end of a batch in `predict` methods.

    Subclasses should override for any actions to run.

    Arguments:
        batch: Integer, index of batch within the current epoch.
        logs: Dict. Aggregated metric results up until this batch.
    """

  @doc_controls.for_subclass_implementers
  def on_train_begin(self, logs=None):
    """Called at the beginning of training.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently no data is passed to this argument for this method
          but that may change in the future.
    """

  @doc_controls.for_subclass_implementers
  def on_train_end(self, logs=None):
    """Called at the end of training.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently the output of the last call to `on_epoch_end()`
          is passed to this argument for this method but that may change in
          the future.
    """

  @doc_controls.for_subclass_implementers
  def on_test_begin(self, logs=None):
    """Called at the beginning of evaluation or validation.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently no data is passed to this argument for this method
          but that may change in the future.
    """

  @doc_controls.for_subclass_implementers
  def on_test_end(self, logs=None):
    """Called at the end of evaluation or validation.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently the output of the last call to
          `on_test_batch_end()` is passed to this argument for this method
          but that may change in the future.
    """

  @doc_controls.for_subclass_implementers
  def on_predict_begin(self, logs=None):
    """Called at the beginning of prediction.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently no data is passed to this argument for this method
          but that may change in the future.
    """

  @doc_controls.for_subclass_implementers
  def on_predict_end(self, logs=None):
    """Called at the end of prediction.

    Subclasses should override for any actions to run.

    Arguments:
        logs: Dict. Currently no data is passed to this argument for this method
          but that may change in the future.
    """

  def _implements_train_batch_hooks(self):
    """Determines if this Callback should be called for each train batch."""
    return (not generic_utils.is_default(self.on_batch_begin) or
            not generic_utils.is_default(self.on_batch_end) or
            not generic_utils.is_default(self.on_train_batch_begin) or
            not generic_utils.is_default(self.on_train_batch_end))

這些鉤子的原始程式是在模型訓練流程中的

keras原始碼位置: tensorflow\python\keras\engine\training.py

#部分摘錄如下(## I am hook):
# Container that configures and calls `tf.keras.Callback`s.
      if not isinstance(callbacks, callbacks_module.CallbackList):
        callbacks = callbacks_module.CallbackList(
            callbacks,
            add_history=True,
            add_progbar=verbose != 0,
            model=self,
            verbose=verbose,
            epochs=epochs,
            steps=data_handler.inferred_steps)

      ## I am hook
      callbacks.on_train_begin()
      training_logs = None
      # Handle fault-tolerance for multi-worker.
      # TODO(omalleyt): Fix the ordering issues that mean this has to
      # happen after `callbacks.on_train_begin`.
      data_handler._initial_epoch = (  # pylint: disable=protected-access
          self._maybe_load_initial_epoch_from_ckpt(initial_epoch))
      for epoch, iterator in data_handler.enumerate_epochs():
        self.reset_metrics()
        callbacks.on_epoch_begin(epoch)
        with data_handler.catch_stop_iteration():
          for step in data_handler.steps():
            with trace.Trace(
                'TraceContext',
                graph_type='train',
                epoch_num=epoch,
                step_num=step,
                batch_size=batch_size):
              ## I am hook
              callbacks.on_train_batch_begin(step)
              tmp_logs = train_function(iterator)
              if data_handler.should_sync:
                context.async_wait()
              logs = tmp_logs  # No error, now safe to assign to logs.
              end_step = step + data_handler.step_increment
              callbacks.on_train_batch_end(end_step, logs)
        epoch_logs = copy.copy(logs)

        # Run validation.

        ## I am hook
        callbacks.on_epoch_end(epoch, epoch_logs)

3.2 mmdetection

mmdetection是一個目標偵測的開源框架,整合了許多不同的目標偵測深度學習演算法(pytorch版),如faster-rcnn, fpn, retianet等。裡面也大量使用了hook,暴露給應用實現流程中具體部分。

詳見

https://github.com/open-mmlab/mmdetection

<p>这里看一个训练的调用例子(摘录)(<code>https://github.com/open-mmlab/mmdetection/blob/5d592154cca589c5113e8aadc8798bbc73630d98/mmdet/apis/train.py

def train_detector(model,
                   dataset,
                   cfg,
                   distributed=False,
                   validate=False,
                   timestamp=None,
                   meta=None):
    logger = get_root_logger(cfg.log_level)

    # prepare data loaders

    # put model on gpus

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = EpochBasedRunner(
        model,
        optimizer=optimizer,
        work_dir=cfg.work_dir,
        logger=logger,
        meta=meta)
    # an ugly workaround to make .log and .log.json filenames the same
    runner.timestamp = timestamp

    # fp16 setting
    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config,
                                   cfg.get(&#39;momentum_config&#39;, None))
    if distributed:
        runner.register_hook(DistSamplerSeedHook())

    # register eval hooks
    if validate:
        # Support batch_size > 1 in validation
        eval_cfg = cfg.get(&#39;evaluation&#39;, {})
        eval_hook = DistEvalHook if distributed else EvalHook
        runner.register_hook(eval_hook(val_dataloader, **eval_cfg))

    # user-defined hooks
    if cfg.get(&#39;custom_hooks&#39;, None):
        custom_hooks = cfg.custom_hooks
        assert isinstance(custom_hooks, list), \
            f&#39;custom_hooks expect list type, but got {type(custom_hooks)}&#39;
        for hook_cfg in cfg.custom_hooks:
            assert isinstance(hook_cfg, dict), \
                &#39;Each item in custom_hooks expects dict type, but got &#39; \
                f&#39;{type(hook_cfg)}&#39;
            hook_cfg = hook_cfg.copy()
            priority = hook_cfg.pop(&#39;priority&#39;, &#39;NORMAL&#39;)
            hook = build_from_cfg(hook_cfg, HOOKS)
            runner.register_hook(hook, priority=priority)

4. 总结

本文介绍了hook的概念和应用,并给出了python的实现细则。希望对比有帮助。总结如下:

  • hook函数是流程中预定义好的一个步骤,没有实现

  • 挂载或者注册时, 流程执行就会执行这个钩子函数

  • 回调函数和hook函数功能上是一致的

  • hook设计方式带来灵活性,如果流程中有一个步骤,你想让调用方来实现,你可以用hook函数

相关免费学习推荐:php编程(视频)

以上是迅速掌握Python中的Hook鉤子函數的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:csdn.net。如有侵權,請聯絡admin@php.cn刪除