1、斐波那契數列
【題目】
大家都知道斐波那契數列,現在要求輸入一個整數n,請你輸出斐波那契數列的第n 項(從0 開始,第0 項為0)。
(影片教學推薦:java課程)
【程式碼】
package swear2offer.array; public class FeiBoNaQi { /** * 大家都知道斐波那契数列,现在要求输入一个整数 n, * 请你输出斐波那契数列的第 n 项(从 0 开始,第 0 项为 0)。 * 0,1,1,2,3,5 * n<=39 * */ public int Fibonacci(int n) { if (n == 0) return 0; if (n == 1 || n== 2) return 1; return Fibonacci(n-1) + Fibonacci(n-2); } /** * 非递归方式,递归的数据结构使用的栈,那就是使用栈的方式 * */ public int NoRecursive(int n) { if (n>2) { int[] a = new int[n+1]; a[0] = 0; a[1] = 1; a[2] = 1; for (int i=3; i<=n; i++) { a[i] = a[i-1] + a[i-2]; } return a[n]; } else { if (n == 0) return 0; else return 1; } } public static void main(String[] args) { System.out.println(new FeiBoNaQi().Fibonacci(39)); System.out.println(new FeiBoNaQi().Fibonacci(39)); } }
2、矩形覆蓋
【題目】
我們可以用21 的小矩形橫著或豎著去覆蓋更大的矩形。請問用 n 個 21 的小矩形無重疊地覆蓋一個 2*n 的大矩形,總共有多少種方法?
例如n=3 時,2*3 的矩形區塊有3 種覆寫方法:
#程式碼:
package swear2offer.array; public class Rectangle { /** * f[0] = 0; * f[1] = 1; * f[2] = 2; * f[3] = 3; * f[4] = 5; * f[5] = 8; * f[n] = f[n-1] + f[n-2] * */ public int RectCover(int target) { if (target < 4) return target; int[] f = new int[target + 1]; int i; for (i=0; i<4; i++) f[i] = i; for (i=4; i<=target; i++) { f[i] = f[i-1] + f[i-2]; } return f[target]; } public static void main(String[] args) { System.out.println(new Rectangle().RectCover(5)); } }
【思考】
最直白的結題方式就是找規律,從總結的規律可以看出這是斐波那契數列的實現方式;另一種就是根據題意來解答,求n的方法,這類問題很容易想到是從n-1來求解,而第一個區塊是橫(f[n-2])是豎(f[n-1]),分別對應不同的情況
(更多相關面試題推薦:java面試題目及答案)
3、二進位中1 的個數
【題目】
輸入一個整數,輸出該數二進位表示中1 的個數。其中負數用補碼表示。
【代碼】
package swear2offer.array; public class Binary { /** * 输入一个整数,输出该数二进制表示中 1 的个数。其中负数用补码表示。 * */ public int NumberOf1(int n) { int count; count = 0; while(n != 0) { n = n & (n-1);// 与操作就是二进制的操作,适用原码和补码 count ++; } return count; } }
【思考】
負數的反碼: 符號位不變,其餘各位按位取反負數的補碼:在其反碼的基礎上1
如果一個整數不是0,那麼這個整數至少有一位是1。如果我們把這個整數減 1,那麼原來處在整數最右邊的 1 就會變成 0,原來在 1 後面的所有的 0 都會變成 1 (如果最右邊的 1 後面還有 0 的話)。其餘所有位將不會受到影響。
舉例:一個二進制數 1100,從右邊數起第三位是處於最右邊的一個 1。減去1 後,第三位變成0,它後面的兩位0 變成了1,而前面的1 保持不變,因此得到的結果是1011. 我們發現減1 的結果是把最右邊的一個1 開始的所有位元都取反了。這時候如果我們再把原來的整數和減去 1 之後的結果做與運算,從原來整數最右邊一個 1 那一位開始所有位都會變成 0。如1100&1011=1000. 也就是說,把一個整數減去1,再和原整數做與運算,會把該整數最右邊一個1 變成0. 那麼一個整數的二進制有多少個1,就可以進行多少次這樣的操作。
4、數值的整數次方
【題目】
給定一個 double 類型的浮點數 base 和 int 類型的整數 exponent。求 base 的 exponent 次方。
保證base 和exponent 不同時為0
【程式碼】
package swear2offer.array; public class Power { public double Power(double base, int exponent) { if (base == 0) return 0; if (exponent == 0) return 1; int count; boolean flag; double temp; count = 1; temp = base; flag = true;// 标记正负 if (exponent < 0){ exponent = -exponent; flag = false; } while (count < exponent) { base *= temp; count ++; } if (flag) { return base; } else { return 1/base; } } public static void main(String[] args) { System.out.println(new Power().Power(2,-3)); } }
【思考】
本題難度並不大,演算法也不是很複雜,但邊邊角角很容易遺漏,
第一點就是exponent的正負,很容易就漏掉負數的情況
其次,base==0和exponent==0的情況是不一樣的
最後,base累乘的時候,是不能用本身的,因為base是不斷變大的。
5、調整數組順序使奇數位於偶數前面
【題目】
輸入一個整數數組,實現一個函數來調整該數組中數字的順序,使得所有的奇數位於數組的前半部分,所有的偶數位於數組的後半部分,並保證奇數和奇數,偶數和偶數之間的相對位置不變。
【程式碼】
package swear2offer.array; import java.util.Arrays; public class OddEven { /** * 输入一个整数数组,实现一个函数来调整该数组中数字的顺序, * 使得所有的奇数位于数组的前半部分,所有的偶数位于数组的后半部分, * 并保证奇数和奇数,偶数和偶数之间的相对位置不变。 * * 时空复杂度较高的算法: * 新建一个数组b,用来保存奇数,在重新变量一次,保存偶数 * 时空复杂度0(n) * */ public void reOrderArray1(int [] array) { int n,i,j; n = array.length; int[] b = new int[n]; j = 0;// 用来保存数组B的下标 for (i=0; i<n; i++) { if (array[i]%2 != 0) { b[j] = array[i]; j ++; } } for (i=0; i<n; i++) { if (array[i]%2 == 0){ b[j] = array[i]; j++; } } for (i=0; i<n; i++) { array[i] = b[i]; } } /** * 采用的冒泡交换以及快速排序的思想: * 设定两个游标,游标分别用来标记奇数和偶数的下标,然后交换二者 * 注意交换二者是无法保证顺序的,交换的ij之间还有进行平移。 * */ public void reOrderArray(int [] array) { int n,i,j,temp,p; n = array.length; i = 0; j = 0; while (i<n && j<n) { // i标记偶数下标 while (i<n) { if (array[i]%2 ==0){ break; } else { i++; } } j = i; // j标记奇数下标 while (j<n) { if (array[j]%2 !=0){ break; } else { j++; } } if (i<n && j<n) { // 此时ij已经在遇到的第一个偶数和奇数停下,把ij之间的内容平移 temp = array[j]; for (p=j; p>i; p--) { array[p] = array[p-1]; } array[i] = temp; // 此时把i,j标记到 未交换前的偶数位置的下一个 i ++; j = i; } } } public static void main(String[] args) { int[] a = {1,4,6,3,2,5,8}; int[] b = {2,4,6,1,3,5,7}; new OddEven().reOrderArray(b); System.out.println(Arrays.toString(b)); } }
【思考】
顯然,創建新數組的方式,是一種取巧的方式,題目要求是需要在本數組上進行操作,第二種方式就是採用在本數組上進行操作的,而這種雙遊標遞進的方式跟快速排序的思想很接近。
相關推薦:java入門
以上是java面試中常見的陣列題目總結(二)的詳細內容。更多資訊請關注PHP中文網其他相關文章!