如下程式碼會將npy的格式資料讀出,並且輸出來到控制台:
import numpy as np ##设置全部数据,不输出省略号 import sys np.set_printoptions(threshold=sys.maxsize) boxes=np.load('./input_output/boxes.npy') print(boxes) np.savetxt('./input_output/boxes.txt',boxes,fmt='%s',newline='\n') print('---------------------boxes--------------------------')
如下程式碼實作npy格式檔案轉換為txt,並且儲存到目前目錄相同文件名稱
實作轉換整個資料夾下面多個文件:
import os import numpy as np path='./input_output' #一个文件夹下多个npy文件, txtpath='./input_output' namelist=[x for x in os.listdir(path)] for i in range( len(namelist) ): datapath=os.path.join(path,namelist[i]) #specific address print(namelist[i]) data = np.load(datapath).reshape([-1, 2]) # (39, 2) np.savetxt('%s/%s.txt'%(txtpath,namelist[i]),data) print ('over') import os import numpy as np path='./input_output' #一个文件夹下多个npy文件 txtpath='./input_output' namelist=[x for x in os.listdir(path)] for i in range( len(namelist) ): datapath=os.path.join(path,namelist[i]) #specific address print(namelist[i]) #data = np.load(datapath).reshape([-1, 2]) # (39, 2) input_data = np.load(datapath) # (39, 2) data = input_data.reshape(1, -1) np.savetxt('%s/%s.txt'%(txtpath,namelist[i]),data) print ('over')
同樣的程式碼,實作讀取單一npy文件,讀取並且儲存為txt :
import numpy as np input_data = np.load(r"C:\test.npy") print(input_data.shape) data = input_data.reshape(1,-1) print(data.shape) print(data) np.savetxt(r"C:\test.txt",data,delimiter=',')
修改pycharm的控制台的buffer大小:
如果你是用pycharm作為Python的編輯器,那麼控制台的buf預設為1024,如果輸出資料太多,需要修改buff大小才能讓
全部資料輸出,修改方法:
找到pycharm 安裝目錄的bin 目錄下idea.properties 文件, 修改idea.cycle.buffer 值,原來預設為1024
##---------------------------------------------------- ----------------------- # This option controls console cyclic buffer: keeps the console output size not higher than the specified buffer size (Kb). # Older lines are deleted. In order to disable cycle buffer use idea.cycle.buffer.size=disabled #------------------------------ --------------------------------------- idea.cycle.buffer.size=102400
補充知識:讀取npy格式的檔案
npy檔案保存的是網路的權重
問題:Ubuntu環境下用gedit開啟npy文件,是這樣的,根本看不了內容
解決方法:編寫如下程式碼,使解碼後的檔案內容輸出在控制台
import numpy as np context = np.load('E:/KittiSeg_pretrained0/vgg16.npy',encoding="latin1") print(context)
檔案位置依據自己的存放位置進行修改
執行程式碼輸出結果為
{'conv1_2': [array([[[[ 1.66219279e-01, 1.42701820e-01, -4.02113283e-03, ..., 6.18828237e-02, -1.74057148e-02, -3.00644431e-02], [ 9.46945231e-03, 3.87477316e-03, 5.08365929e-02, ..., -2.77981739e-02, 1.71373668e-03, 6.82722731e-03], [ 6.32681847e-02, 2.12877709e-02, -1.63465310e-02, ..., 8.80054955e-04, 6.68104272e-03, -1.41139806e-03], ..., [ 3.47490981e-03, 8.47019628e-02, -4.07223180e-02, ..., -1.13523193e-02, -7.48998486e-03, 3.19077494e-03], [ 5.97234145e-02, 4.97663505e-02, -3.23118735e-03, ..., 1.43114366e-02, 3.03175431e-02, -4.23925705e-02], [ 1.33459672e-01, 4.95484173e-02, -1.78808011e-02, ..., 2.25385167e-02, 3.02020740e-02, -2.17075031e-02]], [[ 2.12007999e-01, 2.10127644e-02, -1.47626130e-02, ..., 2.29580477e-02, 1.23102348e-02, -3.08422819e-02], [-2.62175221e-03, 7.42094172e-03, 6.74030930e-02, ..., -3.06594316e-02, 1.80578313e-03, 4.27369215e-03], [ 2.27197763e-02, -1.07841045e-02, -1.31095545e-02, ..., -1.15751950e-02, 4.18359675e-02, -1.92268589e-03], ..., [-2.70304317e-03, 7.41161704e-02, -3.32262330e-02, ..., -1.10277236e-02, 1.39831286e-02, 5.34419343e-03], [-3.20506282e-02, -2.40584910e-02, -4.52397857e-03, ..., -6.04042644e-03, 2.01962605e-01, -5.04491515e-02], [ 1.68114193e-02, -2.33167298e-02, -1.40886130e-02, ..., -7.79278344e-03, 1.28428593e-01, -2.58184522e-02]], [[-5.91698708e-03, -2.26223674e-02, 4.88128467e-03, ..., 4.13784146e-04, -4.84175496e-02, 1.63675251e-03], [-3.93767562e-03, 9.07397643e-03, 5.36517277e-02, ..., -2.56106984e-02, -4.17886395e-03, 2.47476017e-03], [-3.07008922e-02, -1.09781921e-02, -3.69096454e-03, ..., -1.19221993e-02, -1.39777903e-02, 8.52933805e-03], ..., ..........................................
#相關學習推薦:python影片教學
以上是操作python實作npy格式檔案轉換為txt檔案的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

Python3.6環境下加載Pickle文件報錯:ModuleNotFoundError:Nomodulenamed...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SublimeText3 Linux新版
SublimeText3 Linux最新版

Dreamweaver Mac版
視覺化網頁開發工具