1.最小生成樹介紹
什麼是最小生成樹?
最小生成樹(Minimum spanning tree,MST)是在一個給定的無向圖G(V,E)中求一棵樹T,使得這棵樹擁有圖G中的所有頂點,且所有邊都是來自圖G中的邊,並且滿足整棵樹的邊權值和最小。
2.prim演算法
和Dijkstra演算法很像! !請看如下Gif圖,prim演算法的核心思想是對圖G(V,E)設定集合S,存放已被存取的頂點,然後每次從集合V-S中選擇與集合S的最短距離最小的一個頂點(記為u),訪問並加入集合S。之後,設頂點u為中間點,優化所有從u能到達的頂點v與集合s之間的最短距離。這樣的運算執行n次,直到集合s中包含所有頂點。
不同的是,Dijkstra演算法中的dist是從源點s到頂點w的最短路徑;而prim演算法中的dist是從集合S到頂點w的最短路徑,以下是他們的偽碼描述對比,關於Dijkstra演算法的詳細描述請參考文章
演算法實現:
#include<iostream> #include<vector> #define INF 100000 #define MaxVertex 105 typedef int Vertex; int G[MaxVertex][MaxVertex]; int parent[MaxVertex]; // 并查集 int dist[MaxVertex]; // 距离 int Nv; // 结点 int Ne; // 边 int sum; // 权重和 using namespace std; vector<Vertex> MST; // 最小生成树 // 初始化图信息 void build(){ Vertex v1,v2; int w; cin>>Nv>>Ne; for(int i=1;i<=Nv;i++){ for(int j=1;j<=Nv;j++) G[i][j] = 0; // 初始化图 dist[i] = INF; // 初始化距离 parent[i] = -1; // 初始化并查集 } // 初始化点 for(int i=0;i<Ne;i++){ cin>>v1>>v2>>w; G[v1][v2] = w; G[v2][v1] = w; } } // Prim算法前的初始化 void IniPrim(Vertex s){ dist[s] = 0; MST.push_back(s); for(Vertex i =1;i<=Nv;i++) if(G[s][i]){ dist[i] = G[s][i]; parent[i] = s; } } // 查找未收录中dist最小的点 Vertex FindMin(){ int min = INF; Vertex xb = -1; for(Vertex i=1;i<=Nv;i++) if(dist[i] && dist[i] < min){ min = dist[i]; xb = i; } return xb; } void output(){ cout<<"被收录顺序:"<<endl; for(Vertex i=1;i<=Nv;i++) cout<<MST[i]<<" "; cout<<"权重和为:"<<sum<<endl; cout<<"该生成树为:"<<endl; for(Vertex i=1;i<=Nv;i++) cout<<parent[i]<<" "; } void Prim(Vertex s){ IniPrim(s); while(1){ Vertex v = FindMin(); if(v == -1) break; sum += dist[v]; dist[v] = 0; MST.push_back(v); for(Vertex w=1;w<=Nv;w++) if(G[v][w] && dist[w]) if(G[v][w] < dist[w]){ dist[w] = G[v][w]; parent[w] = v; } } } int main(){ build(); Prim(1); output(); return 0; }
關於prim演算法的更詳細解說請參考影片 https://www.bilibili.com/video/av55114968?p=99
3.kruskal演算法
#Kruskal演算法也可以用來解決最小生成樹的問題,其演算法思想很容易理解,典型的邊貪心,其演算法思想為:
● 在初始狀態時隱去圖中所有的邊,這樣圖中每個頂點都是一個單獨的連通區塊,一共有n個連通區塊
● 對所有邊按邊權從小到大進行排序
● 按邊權從小到大測試所有邊,如果當前測試邊所連接的兩個頂點不在同一個連通塊中,則把這條測試邊加入當前最小生成樹中,否則,將邊捨棄。
● 重複執行上一步驟,直到最小生成樹中的邊數等於總頂點數減一或測試完所有邊時結束;如果結束時,最小生成樹的邊數小於總頂點數減一,說明該圖不連通。
請看下面的Gif圖!
演算法實作:
#include<iostream> #include<string> #include<vector> #include<queue> #define INF 100000 #define MaxVertex 105 typedef int Vertex; int G[MaxVertex][MaxVertex]; int parent[MaxVertex]; // 并查集最小生成树 int Nv; // 结点 int Ne; // 边 int sum; // 权重和 using namespace std; struct Node{ Vertex v1; Vertex v2; int weight; // 权重 // 重载运算符成最大堆 bool operator < (const Node &a) const { return weight>a.weight; } }; vector<Node> MST; // 最小生成树 priority_queue<Node> q; // 最小堆 // 初始化图信息 void build(){ Vertex v1,v2; int w; cin>>Nv>>Ne; for(int i=1;i<=Nv;i++){ for(int j=1;j<=Nv;j++) G[i][j] = 0; // 初始化图 parent[i] = -1; } // 初始化点 for(int i=0;i<Ne;i++){ cin>>v1>>v2>>w; struct Node tmpE; tmpE.v1 = v1; tmpE.v2 = v2; tmpE.weight = w; q.push(tmpE); } } // 路径压缩查找 int Find(int x){ if(parent[x] < 0) return x; else return parent[x] = Find(parent[x]); } // 按秩归并 void Union(int x1,int x2){ if(parent[x1] < parent[x2]){ parent[x1] += parent[x2]; parent[x2] = x1; }else{ parent[x2] += parent[x1]; parent[x1] = x2; } } void Kruskal(){ // 最小生成树的边不到 Nv-1 条且还有边 while(MST.size()!= Nv-1 && !q.empty()){ Node E = q.top(); // 从最小堆取出一条权重最小的边 q.pop(); // 出队这条边 if(Find(E.v1) != Find(E.v2)){ // 检测两条边是否在同一集合 sum += E.weight; Union(E.v1,E.v2); // 并起来 MST.push_back(E); } } } void output(){ cout<<"被收录顺序:"<<endl; for(Vertex i=0;i<Nv;i++) cout<<MST[i].weight<<" "; cout<<"权重和为:"<<sum<<endl; for(Vertex i=1;i<=Nv;i++) cout<<parent[i]<<" "; cout<<endl; } int main(){ build(); Kruskal(); output(); return 0; }
關於kruskal演算法更詳細的解說請參考影片 https://www.bilibili.com/video/av55114968?p =100
推薦課程:C語言教學
#以上是c語言最小生成樹的實現的詳細內容。更多資訊請關注PHP中文網其他相關文章!