首頁  >  文章  >  後端開發  >  go語言網路程式設計、http處理流程詳情

go語言網路程式設計、http處理流程詳情

尚
轉載
2019-11-29 15:14:002064瀏覽

go語言網路程式設計、http處理流程詳情

一、簡介

#go語言中的網路程式設計主要透過net包實現,net包提供了網路I/O接口,包括HTTP、TCP/IP、UDP、網域解析和Unix域socket等。和大多數語言一樣go可以使用幾行程式碼便可以啟動一個伺服器,但是得益於goroutine的配合go實現的伺服器擁有強大並發處理能力。

二、socket程式設計

Socket又稱"套接字",應用程式通常透過"套接字"向網路發出請求或應答網路請求。

socket本質上就是在2台網路互通的電腦之間,架設一個通道,兩台電腦透過這個通道來實現資料的互相傳遞。我們知道網路通訊都是基於ip port 方能定位到目標的具體機器上的具體服務,作業系統有0-65535個端口,每個端口都可以獨立對外提供服務,如果把一個公司比做一台電腦,那公司的總機號碼就相當於ip位址, 每個員工的分機號碼就相當於端口, 你想找公司某個人,必須先打電話到總機,然後再轉分機。

go中socket程式實作起來非常方便,以下是處理流程

伺服器端:

1、監聽埠

2、接受客戶端連接

3、建立goroutine處理連線

客戶端:

1、建立連線

2、收發資料

3、關閉連線

服務端範例:

package main

import (
    "fmt"
    "net"
)

func handle(conn net.Conn)  {    //处理连接方法
    defer conn.Close()  //关闭连接
    for{
        buf := make([]byte,100)
        n,err := conn.Read(buf)  //读取客户端数据
        if err!=nil {
            fmt.Println(err)
            return

        }
        fmt.Printf("read data size %d msg:%s", n, string(buf[0:n]))
        msg := []byte("hello,world\n")
        conn.Write(msg)  //发送数据
    }
}
func main()  {
    fmt.Println("start server....")
    listen,err := net.Listen("tcp","0.0.0.0:3000") //创建监听
    if err != nil{
        fmt.Println("listen failed! msg :" ,err)
        return
    }
    for{
        conn,errs := listen.Accept()  //接受客户端连接
        if errs != nil{
            fmt.Println("accept failed")
            continue
        }
        go handle(conn) //处理连接
    }
}

客戶端範例:

package main

import (
    "bufio"
    "fmt"
    "net"
    "os"
    "strings"
)

func main() {
    conn, err := net.Dial("tcp", "127.0.0.1:3000")
    if err != nil {
        fmt.Println("err dialing:", err.Error())
        return
    }
    defer conn.Close()
    inputReader := bufio.NewReader(os.Stdin)
    for {
        str, _ := inputReader.ReadString('\n')
        data := strings.Trim(str, "\n")
        if data == "quit" {   //输入quit退出
            return
        }
        _, err := conn.Write([]byte(data)) //发送数据
        if err != nil {
            fmt.Println("send data error:", err)
            return
        }
        buf := make([]byte,512)
        n,err := conn.Read(buf)  //读取服务端端数据
        fmt.Println("from server:", string(buf[:n]))
    }
}

conn範例也提供其他方法:

type Conn interface {
    // Read reads data from the connection.
    // Read can be made to time out and return an Error with Timeout() == true
    // after a fixed time limit; see SetDeadline and SetReadDeadline.
    Read(b []byte) (n int, err error)  //读取连接中数据
    
    // Write writes data to the connection.
    // Write can be made to time out and return an Error with Timeout() == true
    // after a fixed time limit; see SetDeadline and SetWriteDeadline.
    Write(b []byte) (n int, err error) //发送数据

    // Close closes the connection.
    // Any blocked Read or Write operations will be unblocked and return errors.
    Close() error   //关闭链接

    // LocalAddr returns the local network address.
    LocalAddr() Addr //返回本地连接地址

    // RemoteAddr returns the remote network address.
    RemoteAddr() Addr //返回远程连接的地址

    // SetDeadline sets the read and write deadlines associated
    // with the connection. It is equivalent to calling both
    // SetReadDeadline and SetWriteDeadline.
    //
    // A deadline is an absolute time after which I/O operations
    // fail with a timeout (see type Error) instead of
    // blocking. The deadline applies to all future and pending
    // I/O, not just the immediately following call to Read or
    // Write. After a deadline has been exceeded, the connection
    // can be refreshed by setting a deadline in the future.
    //
    // An idle timeout can be implemented by repeatedly extending
    // the deadline after successful Read or Write calls.
    //
    // A zero value for t means I/O operations will not time out.
    SetDeadline(t time.Time) error //设置链接读取或者写超时时间

    // SetReadDeadline sets the deadline for future Read calls
    // and any currently-blocked Read call.
    // A zero value for t means Read will not time out.
    SetReadDeadline(t time.Time) error //单独设置读取超时时间

    // SetWriteDeadline sets the deadline for future Write calls
    // and any currently-blocked Write call.
    // Even if write times out, it may return n > 0, indicating that
    // some of the data was successfully written.
    // A zero value for t means Write will not time out.
    SetWriteDeadline(t time.Time) error//单独设置写超时时间
}

三、go中HTTP服務處理流程

簡介

網路發展,許多網路應用程式都是建構再HTTP 服務基礎之上。 HTTP 協定從誕生到現在,發展從1.0,1.1到2.0也不斷再進步。除去細節,理解 HTTP 建構的網路應用只要專注在兩個端---客戶端(clinet)和服務端(server),兩個端的互動來自 clinet 的 request,以及server端的response。所謂的http伺服器,主要在於如何接受 clinet 的 request,並向client傳回response。接收request的過程中,最重要的莫過於路由(router),也就是實作一個Multiplexer器。 Go中既可以使用內建的mutilplexer --- DefautServeMux,也可以自訂。 Multiplexer路由的目的是為了找到處理器函數(handler),後者將對request進行處理,同時建構response。

最後簡化的請求處理流程為:

Clinet -> Requests ->  [Multiplexer(router) -> handler  -> Response -> Clinet

因此,理解go中的http服務,最重要就是要理解Multiplexer和handler,Golang中的Multiplexer基於ServeMux結構,同時也實現了Handler介面。

物件說明:

1、hander函數: 具有func(w http.ResponseWriter, r *http.Requests)簽名的函數

2、handler函數: 經過HandlerFunc結構包裝的handler函數,它實作了ServeHTTP介面方法的函數。當呼叫handler處理器的ServeHTTP方法時,即呼叫handler函數本身。

3、handler物件:實作了Handler介面ServeHTTP方法的結構。

handler處理器和handler物件的差異在於,一個是函數,另外一個是結構,它們都有實作了ServeHTTP方法。很多情況下它們的功能類似,下文就使用統稱為handler。

Handler

Golang沒有繼承,類別多態的方式可以透過介面實作。所謂介面則是定義宣告了函式簽名,任何結構只要實作了與介面函式簽名相同的方法,就等同於實作了介面。 go的http服務都是基於handler進行處理。

type Handler interface {
    ServeHTTP(ResponseWriter, *Request)
}

任何結構體,只要實作了ServeHTTP方法,這個結構就可以稱之為handler物件。 ServeMux會使用handler並呼叫其ServeHTTP方法處理請求並回傳回應。

ServeMux

原始碼部分:

type ServeMux struct {
    mu    sync.RWMutex
    m     map[string]muxEntry
    hosts bool 
}

type muxEntry struct {
    explicit bool
    h        Handler
    pattern  string
}

ServeMux結構中最重要的欄位為m,這是一個map,key是一些url模式, value是一個muxEntry結構,後者裡定義儲存了特定的url模式和handler。

當然,所謂的ServeMux也實作了ServeHTTP接口,也算是一個handler,不過ServeMux的ServeHTTP方法不是用來處理request和respone,而是用來找到路由註冊的handler,後面再做解釋。

Server

除了ServeMux和Handler,還有一個結構Server要了解。從http.ListenAndServe的原始碼可以看出,它建立了一個server對象,並且呼叫server物件的ListenAndServe方法:

func ListenAndServe(addr string, handler Handler) error {
    server := &Server{Addr: addr, Handler: handler}    
    return server.ListenAndServe()
}

查看server的結構如下:

type Server struct {
    Addr         string        
    Handler      Handler       
    ReadTimeout  time.Duration 
    WriteTimeout time.Duration 
    TLSConfig    *tls.Config   

    MaxHeaderBytes int

    TLSNextProto map[string]func(*Server, *tls.Conn, Handler)

    ConnState func(net.Conn, ConnState)
    ErrorLog *log.Logger
    disableKeepAlives int32     nextProtoOnce     sync.Once 
    nextProtoErr      error     
}

server结构存储了服务器处理请求常见的字段。其中Handler字段也保留Handler接口。如果Server接口没有提供Handler结构对象,那么会使用DefautServeMux做multiplexer,后面再做分析。

创建HTTP服务

创建一个http服务,大致需要经历两个过程,首先需要注册路由,即提供url模式和handler函数的映射,其次就是实例化一个server对象,并开启对客户端的监听。

http.HandleFunc("/", indexHandler)
http.ListenAndServe("127.0.0.1:8000", nil)
或
server := &Server{Addr: addr, Handler: handler}

server.ListenAndServe()

示例:

package main
import (
"fmt"
"net/http"
)

func Hello(w http.ResponseWriter, r *http.Request) {
fmt.Println("Hello World.")
fmt.Fprintf(w, "Hello World.\n")
}

func main() {
http.HandleFunc("/", Hello)
err := http.ListenAndServe("0.0.0.0:6000", nil)
if err != nil {
fmt.Println("http listen failed.")
}
}

//curl http://127.0.0.1:6000  
// 结果:Hello World

路由注册

net/http包暴露的注册路由的api很简单,http.HandleFunc选取了DefaultServeMux作为multiplexer:

func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
    DefaultServeMux.HandleFunc(pattern, handler)
}

DefaultServeMux是ServeMux的一个实例。当然http包也提供了NewServeMux方法创建一个ServeMux实例,默认则创建一个DefaultServeMux:

// NewServeMux allocates and returns a new ServeMux.
func NewServeMux() *ServeMux { return new(ServeMux) }

// DefaultServeMux is the default ServeMux used by Serve.
var DefaultServeMux = &defaultServeMux

var defaultServeMux ServeMux

DefaultServeMux的HandleFunc(pattern, handler)方法实际是定义在ServeMux下的:

// HandleFunc registers the handler function for the given pattern.func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
    mux.Handle(pattern, HandlerFunc(handler))
}

HandlerFunc是一个函数类型。同时实现了Handler接口的ServeHTTP方法。使用HandlerFunc类型包装一下路由定义的indexHandler函数,其目的就是为了让这个函数也实现ServeHTTP方法,即转变成一个handler处理器(函数)。

type HandlerFunc func(ResponseWriter, *Request)

// ServeHTTP calls f(w, r).
func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
    f(w, r)
}

我们最开始写的例子中
http.HandleFunc("/",Indexhandler)
这样 IndexHandler 函数也有了ServeHTTP方法。ServeMux的Handle方法,将会对pattern和handler函数做一个map映射:

func ListenAndServe(addr string, handler Handler) error {
    server := &Server{Addr: addr, Handler: handler}
    return server.ListenAndServe()
}
// ListenAndServe listens on the TCP network address srv.Addr and then
// calls Serve to handle requests on incoming connections.
// Accepted connections are configured to enable TCP keep-alives.
// If srv.Addr is blank, ":http" is used.
// ListenAndServe always returns a non-nil error.
func (srv *Server) ListenAndServe() error {
    addr := srv.Addr
    if addr == "" {
        addr = ":http"
    }
    ln, err := net.Listen("tcp", addr)
    if err != nil {
        return err
    }
    return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
}

Server的ListenAndServe方法中,会初始化监听地址Addr,同时调用Listen方法设置监听。最后将监听的TCP对象传入Serve方法:

// Serve accepts incoming connections on the Listener l, creating a
// new service goroutine for each. The service goroutines read requests and
// then call srv.Handler to reply to them.
//
// For HTTP/2 support, srv.TLSConfig should be initialized to the
// provided listener's TLS Config before calling Serve. If
// srv.TLSConfig is non-nil and doesn't include the string "h2" in
// Config.NextProtos, HTTP/2 support is not enabled.
//
// Serve always returns a non-nil error. After Shutdown or Close, the
// returned error is ErrServerClosed.
func (srv *Server) Serve(l net.Listener) error {
    defer l.Close()
    if fn := testHookServerServe; fn != nil {
        fn(srv, l)
    }
    var tempDelay time.Duration // how long to sleep on accept failure

    if err := srv.setupHTTP2_Serve(); err != nil {
        return err
    }

    srv.trackListener(l, true)
    defer srv.trackListener(l, false)

    baseCtx := context.Background() // base is always background, per Issue 16220
    ctx := context.WithValue(baseCtx, ServerContextKey, srv)
    for {
        rw, e := l.Accept()
        if e != nil {
            select {
            case <-srv.getDoneChan():
                return ErrServerClosed
            default:
            }
            if ne, ok := e.(net.Error); ok && ne.Temporary() {
                if tempDelay == 0 {
                    tempDelay = 5 * time.Millisecond
                } else {
                    tempDelay *= 2
                }
                if max := 1 * time.Second; tempDelay > max {
                    tempDelay = max
                }
                srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
                time.Sleep(tempDelay)
                continue
            }
            return e
        }
        tempDelay = 0
        c := srv.newConn(rw)
        c.setState(c.rwc, StateNew) // before Serve can return
        go c.serve(ctx)
    }
}

监听开启之后,一旦客户端请求到底,go就开启一个协程处理请求,主要逻辑都在serve方法之中。

serve方法比较长,其主要职能就是,创建一个上下文对象,然后调用Listener的Accept方法用来 获取连接数据并使用newConn方法创建连接对象。最后使用goroutine协程的方式处理连接请求。因为每一个连接都开起了一个协程,请求的上下文都不同,同时又保证了go的高并发。serve也是一个长长的方法:

// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
    c.remoteAddr = c.rwc.RemoteAddr().String()
    ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
    defer func() {
        if err := recover(); err != nil && err != ErrAbortHandler {
            const size = 64 << 10
            buf := make([]byte, size)
            buf = buf[:runtime.Stack(buf, false)]
            c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
        }
        if !c.hijacked() {
            c.close()
            c.setState(c.rwc, StateClosed)
        }
    }()

    if tlsConn, ok := c.rwc.(*tls.Conn); ok {
        if d := c.server.ReadTimeout; d != 0 {
            c.rwc.SetReadDeadline(time.Now().Add(d))
        }
        if d := c.server.WriteTimeout; d != 0 {
            c.rwc.SetWriteDeadline(time.Now().Add(d))
        }
        if err := tlsConn.Handshake(); err != nil {
            c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
            return
        }
        c.tlsState = new(tls.ConnectionState)
        *c.tlsState = tlsConn.ConnectionState()
        if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
            if fn := c.server.TLSNextProto[proto]; fn != nil {
                h := initNPNRequest{tlsConn, serverHandler{c.server}}
                fn(c.server, tlsConn, h)
            }
            return
        }
    }

    // HTTP/1.x from here on.

    ctx, cancelCtx := context.WithCancel(ctx)
    c.cancelCtx = cancelCtx
    defer cancelCtx()

    c.r = &connReader{conn: c}
    c.bufr = newBufioReader(c.r)
    c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)

    for {
        w, err := c.readRequest(ctx)
        if c.r.remain != c.server.initialReadLimitSize() {
            // If we read any bytes off the wire, we&#39;re active.
            c.setState(c.rwc, StateActive)
        }
        if err != nil {
            const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"

            if err == errTooLarge {
                // Their HTTP client may or may not be
                // able to read this if we&#39;re
                // responding to them and hanging up
                // while they&#39;re still writing their
                // request. Undefined behavior.
                const publicErr = "431 Request Header Fields Too Large"
                fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
                c.closeWriteAndWait()
                return
            }
            if isCommonNetReadError(err) {
                return // don&#39;t reply
            }

            publicErr := "400 Bad Request"
            if v, ok := err.(badRequestError); ok {
                publicErr = publicErr + ": " + string(v)
            }

            fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
            return
        }

        // Expect 100 Continue support
        req := w.req
        if req.expectsContinue() {
            if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
                // Wrap the Body reader with one that replies on the connection
                req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
            }
        } else if req.Header.get("Expect") != "" {
            w.sendExpectationFailed()
            return
        }

        c.curReq.Store(w)

        if requestBodyRemains(req.Body) {
            registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
        } else {
            if w.conn.bufr.Buffered() > 0 {
                w.conn.r.closeNotifyFromPipelinedRequest()
            }
            w.conn.r.startBackgroundRead()
        }

        // HTTP cannot have multiple simultaneous active requests.[*]
        // Until the server replies to this request, it can&#39;t read another,
        // so we might as well run the handler in this goroutine.
        // [*] Not strictly true: HTTP pipelining. We could let them all process
        // in parallel even if their responses need to be serialized.
        // But we&#39;re not going to implement HTTP pipelining because it
        // was never deployed in the wild and the answer is HTTP/2.
        serverHandler{c.server}.ServeHTTP(w, w.req)
        w.cancelCtx()
        if c.hijacked() {
            return
        }
        w.finishRequest()
        if !w.shouldReuseConnection() {
            if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
                c.closeWriteAndWait()
            }
            return
        }
        c.setState(c.rwc, StateIdle)
        c.curReq.Store((*response)(nil))

        if !w.conn.server.doKeepAlives() {
            // We&#39;re in shutdown mode. We might&#39;ve replied
            // to the user without "Connection: close" and
            // they might think they can send another
            // request, but such is life with HTTP/1.1.
            return
        }

        if d := c.server.idleTimeout(); d != 0 {
            c.rwc.SetReadDeadline(time.Now().Add(d))
            if _, err := c.bufr.Peek(4); err != nil {
                return
            }
        }
        c.rwc.SetReadDeadline(time.Time{})
    }
}

serve方法

使用defer定义了函数退出时,连接关闭相关的处理。然后就是读取连接的网络数据,并处理读取完毕时候的状态。接下来就是调用serverHandler{c.server}.ServeHTTP(w, w.req)方法处理请求了。最后就是请求处理完毕的逻辑。

serverHandler是一个重要的结构,它近有一个字段,即Server结构,同时它也实现了Handler接口方法ServeHTTP,并在该接口方法中做了一个重要的事情,初始化multiplexer路由多路复用器。

如果server对象没有指定Handler,则使用默认的DefaultServeMux作为路由Multiplexer。并调用初始化Handler的ServeHTTP方法。

// serverHandler delegates to either the server&#39;s Handler or
// DefaultServeMux and also handles "OPTIONS *" requests.
type serverHandler struct {
    srv *Server
}

func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
    handler := sh.srv.Handler
    if handler == nil {
        handler = DefaultServeMux
    }
    if req.RequestURI == "*" && req.Method == "OPTIONS" {
        handler = globalOptionsHandler{}
    }
    handler.ServeHTTP(rw, req)
}

这里DefaultServeMux的ServeHTTP方法其实也是定义在ServeMux结构中的,相关代码如下:

// Find a handler on a handler map given a path string.
// Most-specific (longest) pattern wins.
func (mux *ServeMux) match(path string) (h Handler, pattern string) {
    // Check for exact match first.
    v, ok := mux.m[path]
    if ok {
        return v.h, v.pattern
    }

    // Check for longest valid match.
    var n = 0
    for k, v := range mux.m {
        if !pathMatch(k, path) {
            continue
        }
        if h == nil || len(k) > n {
            n = len(k)
            h = v.h
            pattern = v.pattern
        }
    }
    return
}
func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {

    // CONNECT requests are not canonicalized.
    if r.Method == "CONNECT" {
        return mux.handler(r.Host, r.URL.Path)
    }

    // All other requests have any port stripped and path cleaned
    // before passing to mux.handler.
    host := stripHostPort(r.Host)
    path := cleanPath(r.URL.Path)
    if path != r.URL.Path {
        _, pattern = mux.handler(host, path)
        url := *r.URL
        url.Path = path
        return RedirectHandler(url.String(), StatusMovedPermanently), pattern
    }

    return mux.handler(host, r.URL.Path)
}

// handler is the main implementation of Handler.
// The path is known to be in canonical form, except for CONNECT methods.
func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
    mux.mu.RLock()
    defer mux.mu.RUnlock()

    // Host-specific pattern takes precedence over generic ones
    if mux.hosts {
        h, pattern = mux.match(host + path)
    }
    if h == nil {
        h, pattern = mux.match(path)
    }
    if h == nil {
        h, pattern = NotFoundHandler(), ""
    }
    return
}

// ServeHTTP dispatches the request to the handler whose
// pattern most closely matches the request URL.
func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
    if r.RequestURI == "*" {
        if r.ProtoAtLeast(1, 1) {
            w.Header().Set("Connection", "close")
        }
        w.WriteHeader(StatusBadRequest)
        return
    }
    h, _ := mux.Handler(r)
    h.ServeHTTP(w, r)
}

mux的ServeHTTP方法通过调用其Handler方法寻找注册到路由上的handler函数,并调用该函数的ServeHTTP方法,本例则是IndexHandler函数。

 mux的Handler方法对URL简单的处理,然后调用handler方法,后者会创建一个锁,同时调用match方法返回一个handler和pattern。 在match方法中,mux的m字段是map[string]muxEntry图,后者存储了pattern和handler处理器函数,因此通过迭代m寻找出注册路由的patten模式与实际url匹配的handler函数并返回。 

返回的结构一直传递到mux的ServeHTTP方法,接下来调用handler函数的ServeHTTP方法,即IndexHandler函数,然后把response写到http.RequestWirter对象返回给客户端。

上述函数运行结束即`serverHandler{c.server}.ServeHTTP(w, w.req)`运行结束。接下来就是对请求处理完毕之后上希望和连接断开的相关逻辑。 至此,Golang中一个完整的http服务介绍完毕,包括注册路由,开启监听,处理连接,路由处理函数。

总结

多数的web应用基于HTTP协议,客户端和服务器通过request-response的方式交互。一个server并不可少的两部分莫过于路由注册和连接处理。Golang通过一个ServeMux实现了的multiplexer路由多路复用器来管理路由。同时提供一个Handler接口提供ServeHTTP用来实现handler处理其函数,后者可以处理实际request并构造response。 

ServeMux和handler处理器函数的连接桥梁就是Handler接口。ServeMux的ServeHTTP方法实现了寻找注册路由的handler的函数,并调用该handler的ServeHTTP方法。

ServeHTTP方法就是真正处理请求和构造响应的地方。 回顾go的http包实现http服务的流程,可见大师们的编码设计之功力。学习有利提高自身的代码逻辑组织能力。更好的学习方式除了阅读,就是实践,接下来,我们将着重讨论来构建http服务。尤其是构建http中间件函数。

四、HTTP客户端工具

net/http不仅提供了服务端处理,还提供了客户端处理功能。

http包中提供了Get、Post、Head、PostForm方法实现HTTP请求:

//GET
func Get(url string) (resp *Response, err error) {
    return DefaultClient.Get(url)
}

//POST
func Post(url string, contentType string, body io.Reader) (resp *Response, err error) {
    return DefaultClient.Post(url, contentType, body)
}

//HEAD
func Head(url string) (resp *Response, err error) {
    return DefaultClient.Head(url)
}

//POSTFORM

func PostForm(url string, data url.Values) (resp *Response, err error) {
    return DefaultClient.PostForm(url, data)
}

GET请求示例

package main

import (
    "fmt"
    "net/http"
    "log"
    "reflect"
    "bytes"
)

func main() {

    resp, err := http.Get("http://www.baidu.com")
    if err != nil {
        // 错误处理
        log.Println(err)
        return
    }

    defer resp.Body.Close() //关闭链接

    headers := resp.Header

    for k, v := range headers {
        fmt.Printf("k=%v, v=%v\n", k, v) //所有头信息
    }

    fmt.Printf("resp status %s,statusCode %d\n", resp.Status, resp.StatusCode)

    fmt.Printf("resp Proto %s\n", resp.Proto)

    fmt.Printf("resp content length %d\n", resp.ContentLength)

    fmt.Printf("resp transfer encoding %v\n", resp.TransferEncoding)

    fmt.Printf("resp Uncompressed %t\n", resp.Uncompressed)

    fmt.Println(reflect.TypeOf(resp.Body)) 
    buf := bytes.NewBuffer(make([]byte, 0, 512))
    length, _ := buf.ReadFrom(resp.Body)
    fmt.Println(len(buf.Bytes()))
    fmt.Println(length)
    fmt.Println(string(buf.Bytes()))
}

使用http.Do设置请求头、cookie等

package main

import (
    "net/http"
    "strings"
    "io/ioutil"
    "log"
    "fmt"
)

func main() {
    client := &http.Client{}
    req, err := http.NewRequest("POST", "http://www.baidu.com",
        strings.NewReader("name=xxxx&passwd=xxxx"))
    if err != nil {
        fmt.Println(err)
        return
    }

    req.Header.Set("Content-Type", "application/x-www-form-urlencoded; charset=UTF-8") //设置请求头信息

    resp, err := client.Do(req)

    defer resp.Body.Close()

    body, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        log.Println(err)
        return
    }
    var res string
    res = string(body[:])
    fmt.Println(res)
}

POST请求示例

package main

import (
    "net/http"
    "strings"
    "fmt"
    "io/ioutil"
)

func main() {
    resp, err := http.Post("http://www.baidu.com",
        "application/x-www-form-urlencoded",
        strings.NewReader("username=xxx&password=xxxx"))
    if err != nil {
        fmt.Println(err)
        return
    }

    defer resp.Body.Close()
    body, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        fmt.Println(err)
        return
    }

    fmt.Println(string(body))
}

PostForm请求示例

package main

import (
    "net/http"
    "fmt"
    "io/ioutil"
    "net/url"
)

func main() {

    postParam := url.Values{
        "name":      {"wd"},
        "password": {"1234"},
    }

    resp, err := http.PostForm("https://cn.bing.com/", postParam)
    if err != nil {
        fmt.Println(err)
        return
    }

    defer resp.Body.Close()
    body, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        fmt.Println(err)
        return
    }

    fmt.Println(string(body))
}

以上是go語言網路程式設計、http處理流程詳情的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:cnblogs.com。如有侵權,請聯絡admin@php.cn刪除