首頁 >Java >Java基礎 >java泛型詳細介紹

java泛型詳細介紹

尚
轉載
2019-11-27 14:31:501729瀏覽

java泛型詳細介紹

一. 泛型概念的提出(為什麼需要泛型)? (推薦:java影片教學

首先,我們看下面這段簡短的程式碼:

public class GenericTest {

    public static void main(String[] args) {
        List list = new ArrayList();
        list.add("qqyumidi");
        list.add("corn");
        list.add(100);

        for (int i = 0; i < list.size(); i++) {
            String name = (String) list.get(i); // 1
            System.out.println("name:" + name);
        }
    }
}

定義了一個List類型的集合,先在其中加入了兩個字串類型的值,隨後加入一個Integer類型的值。這是完全允許的,因為此時list預設的類型為Object類型。

在之後的循環中,由於忘記了先前在list中也加入了Integer類型的值或其他編碼原因,很容易出現類似//1中的錯誤。因為編譯階段正常,而執行時會出現「java.lang.ClassCastException」異常。因此,導致此類錯誤編碼過程中不易發現。

 在如上的編碼過程中,我們發現主要存在兩個問題:

1.當我們將一個物件放入集合中,集合不會記住此物件的類型,當當再次從集合中取出此物件時,改物件的編譯類型變成了Object類型,但其執行時間類型任然為其本身類型。

2.因此,//1處取出集合元素時需要人為的強制類型轉換到特定的目標類型,且容易出現「java.lang.ClassCastException」異常。

那麼有沒有辦法可以讓集合能夠記住集合內元素各型,且能夠達到只要編譯時不出現問題,執行時就不會出現「java.lang.ClassCastException」異常呢?答案就是使用泛型。

二.什麼是泛型?

泛型,即「參數化類型」。 一提到參數,最熟悉的就是定義方法時有形參,然後呼叫此方法時傳遞實參。

那麼參數化型別怎麼理解呢?顧名思義,就是將類型由原來的具體的類型參數化,類似於方法中的變數參數,此時類型也定義成參數形式(可以稱之為類型形參),然後在使用/呼叫時傳入具體的類型(類型實參)。

 看起來好像有點複雜,首先我們看下上面那個例子採用泛型的寫法。

public class GenericTest {

    public static void main(String[] args) {
        /*
        List list = new ArrayList();
        list.add("qqyumidi");
        list.add("corn");
        list.add(100);
        */

        List<String> list = new ArrayList<String>();
        list.add("qqyumidi");
        list.add("corn");
        //list.add(100);   // 1  提示编译错误

        for (int i = 0; i < list.size(); i++) {
            String name = list.get(i); // 2
            System.out.println("name:" + name);
        }
    }
}

採用泛型寫法後,在//1處想加入一個Integer類型的物件時會出現編譯錯誤,透過Listf7e83be87db5cd2d9a8a0b8117b38cd4,直接限定了list集合中只能含有String類型的元素,從而在//2處無須進行強制類型轉換,因為此時,集合能夠記住元素的類型信息,編譯器已經能夠確認它是String類型了。

結合上面的泛型定義,我們知道在Listf7e83be87db5cd2d9a8a0b8117b38cd4中,String是類型實參,也就是說,對應的List介面中肯定含有類型形參。且get()方法的回傳結果也直接是此形參類型(也就是對應的傳入的型別實參)。下面就來看看List介面的的具體定義:

public interface List<E> extends Collection<E> {

    int size();

    boolean isEmpty();

    boolean contains(Object o);

    Iterator<E> iterator();

    Object[] toArray();

    <T> T[] toArray(T[] a);

    boolean add(E e);

    boolean remove(Object o);

    boolean containsAll(Collection<?> c);

    boolean addAll(Collection<? extends E> c);

    boolean addAll(int index, Collection<? extends E> c);

    boolean removeAll(Collection<?> c);

    boolean retainAll(Collection<?> c);

    void clear();

    boolean equals(Object o);

    int hashCode();

    E get(int index);

    E set(int index, E element);

    void add(int index, E element);

    E remove(int index);

    int indexOf(Object o);

    int lastIndexOf(Object o);

    ListIterator<E> listIterator();

    ListIterator<E> listIterator(int index);

    List<E> subList(int fromIndex, int toIndex);
}

我們可以看到,在List介面中採用泛型化定義之後,1a4db2c2c2313771e5742b6debf617a1中的E表示類型形參,可以接收具體的類型實參,且此介面定義中,凡是出現E的地方均表示相同的接受自外部的類型實參。

自然的,ArrayList作為List介面的實作類,其定義形式是:

public class ArrayList<E> extends AbstractList<E> 
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
    
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }
    
    public E get(int index) {
        rangeCheck(index);
        checkForComodification();
        return ArrayList.this.elementData(offset + index);
    }
    
    //...省略掉其他具体的定义过程

}

由此,我們從原始碼角度明白了為什麼//1處加入Integer類型物件編譯錯誤,且//2處get()到的類型直接就是String類型了。

三.自訂泛型介面、泛型類別和泛型方法

#從上面的內容中,大家已經明白了泛型的具體運作過程。也知道了介面、類別和方法也都可以使用泛型去定義,以及對應的使用。是的,在具體使用時,可以分為泛型介面、泛型類別和泛型方法。

自訂泛型介面、泛型類別和泛型方法與上述Java原始碼中的List、ArrayList類似。如下,我們來看一個最簡單的泛型類別和方法定義:

public class GenericTest {

    public static void main(String[] args) {

        Box<String> name = new Box<String>("corn");
        System.out.println("name:" + name.getData());
    }

}

class Box<T> {

    private T data;

    public Box() {

    }

    public Box(T data) {
        this.data = data;
    }

    public T getData() {
        return data;
    }

}

在泛型介面、泛型類別和泛型方法的定義過程中,我們常見的如T、E、K、V等形式的參數常用於表示泛型形參,由於接收來自外部使用時候傳入的類型實參。那麼對於不同傳入的型別實參,所產生的對應物件實例的型別是不是一樣的呢?

public class GenericTest {

    public static void main(String[] args) {

        Box<String> name = new Box<String>("corn");
        Box<Integer> age = new Box<Integer>(712);

        System.out.println("name class:" + name.getClass());      // com.qqyumidi.Box
        System.out.println("age class:" + age.getClass());        // com.qqyumidi.Box
        System.out.println(name.getClass() == age.getClass());    // true

    }

}

由此,我們發現,在使用泛型類別時,雖然傳入了不同的泛型實參,但並沒有真正意義上生成不同的類型,傳入不同泛型實參的泛型類別在記憶體上只有一個,即還是原來的最基本的類型(本實例中為Box),當然,在邏輯上我們可以理解成多個不同的泛型類型。

究其原因,在於Java中的泛型這一概念提出的目的,導致其只是作用於程式碼編譯階段,在編譯過程中,對於正確檢驗泛型結果後,會將泛型的相關資訊擦出,也就是說,成功編譯過後的class檔案中是不包含任何泛型資訊的。泛型資訊不會進入到運行時階段。

对此总结成一句话:泛型类型在逻辑上看以看成是多个不同的类型,实际上都是相同的基本类型。 

四.类型通配符

接着上面的结论,我们知道,Boxc8f01a3f8889dcf657849dd45bc0fc4c和Boxc0f559cc8d56b43654fcbe4aa9df7b4a实际上都是Box类型,现在需要继续探讨一个问题,那么在逻辑上,类似于Boxc8f01a3f8889dcf657849dd45bc0fc4c和Boxc0f559cc8d56b43654fcbe4aa9df7b4a是否可以看成具有父子关系的泛型类型呢?

为了弄清这个问题,我们继续看下下面这个例子:

public class GenericTest {

    public static void main(String[] args) {

        Box<Number> name = new Box<Number>(99);
        Box<Integer> age = new Box<Integer>(712);

        getData(name);
        
        //The method getData(Box<Number>) in the type GenericTest is 
        //not applicable for the arguments (Box<Integer>)
        getData(age);   // 1

    }
    
    public static void getData(Box<Number> data){
        System.out.println("data :" + data.getData());
    }

}

我们发现,在代码//1处出现了错误提示信息:The method getData(Boxc8f01a3f8889dcf657849dd45bc0fc4c) in the t ype GenericTest is not applicable for the arguments (Boxc0f559cc8d56b43654fcbe4aa9df7b4a)。显然,通过提示信息,我们知道Boxc8f01a3f8889dcf657849dd45bc0fc4c在逻辑上不能视为Boxc0f559cc8d56b43654fcbe4aa9df7b4a的父类。那么,原因何在呢?

public class GenericTest {

    public static void main(String[] args) {

        Box<Integer> a = new Box<Integer>(712);
        Box<Number> b = a;  // 1
        Box<Float> f = new Box<Float>(3.14f);
        b.setData(f);        // 2

    }

    public static void getData(Box<Number> data) {
        System.out.println("data :" + data.getData());
    }

}

class Box<T> {

    private T data;

    public Box() {

    }

    public Box(T data) {
        setData(data);
    }

    public T getData() {
        return data;
    }

    public void setData(T data) {
        this.data = data;
    }

}

这个例子中,显然//1和//2处肯定会出现错误提示的。在此我们可以使用反证法来进行说明。

假设Boxc8f01a3f8889dcf657849dd45bc0fc4c在逻辑上可以视为Boxc0f559cc8d56b43654fcbe4aa9df7b4a的父类,那么//1和//2处将不会有错误提示了,那么问题就出来了,通过getData()方法取出数据时到底是什么类型呢?Integer? Float? 还是Number?且由于在编程过程中的顺序不可控性,导致在必要的时候必须要进行类型判断,且进行强制类型转换。显然,这与泛型的理念矛盾,因此,在逻辑上Boxc8f01a3f8889dcf657849dd45bc0fc4c不能视为Boxc0f559cc8d56b43654fcbe4aa9df7b4a的父类。

好,那我们回过头来继续看“类型通配符”中的第一个例子,我们知道其具体的错误提示的深层次原因了。那么如何解决呢?总部能再定义一个新的函数吧。

这和Java中的多态理念显然是违背的,因此,我们需要一个在逻辑上可以用来表示同时是Boxc0f559cc8d56b43654fcbe4aa9df7b4a和Boxc8f01a3f8889dcf657849dd45bc0fc4c的父类的一个引用类型,由此,类型通配符应运而生。

类型通配符一般是使用 ? 代替具体的类型实参。注意了,此处是类型实参,而不是类型形参!且Box6b3d0130bba23ae47fe2b8e8cddf0195在逻辑上是Boxc0f559cc8d56b43654fcbe4aa9df7b4a、Boxc8f01a3f8889dcf657849dd45bc0fc4c...等所有Boxf4669da5dd7ec4cbc793dba728d85fa1的父类。由此,我们依然可以定义泛型方法,来完成此类需求。

public class GenericTest {

    public static void main(String[] args) {

        Box<String> name = new Box<String>("corn");
        Box<Integer> age = new Box<Integer>(712);
        Box<Number> number = new Box<Number>(314);

        getData(name);
        getData(age);
        getData(number);
    }

    public static void getData(Box<?> data) {
        System.out.println("data :" + data.getData());
    }

}

有时候,我们还可能听到类型通配符上限和类型通配符下限。具体有是怎么样的呢?

在上面的例子中,如果需要定义一个功能类似于getData()的方法,但对类型实参又有进一步的限制:只能是Number类及其子类。此时,需要用到类型通配符上限。

public class GenericTest {

    public static void main(String[] args) {

        Box<String> name = new Box<String>("corn");
        Box<Integer> age = new Box<Integer>(712);
        Box<Number> number = new Box<Number>(314);

        getData(name);
        getData(age);
        getData(number);
        
        //getUpperNumberData(name); // 1
        getUpperNumberData(age);    // 2
        getUpperNumberData(number); // 3
    }

    public static void getData(Box<?> data) {
        System.out.println("data :" + data.getData());
    }
    
    public static void getUpperNumberData(Box<? extends Number> data){
        System.out.println("data :" + data.getData());
    }

}

此时,显然,在代码//1处调用将出现错误提示,而//2 //3处调用正常。

类型通配符上限通过形如Boxa2b037db85f4e1df0e812b9647ac55a8形式定义,相对应的,类型通配符下限为Boxda50108ad159903fabe211f1543600e8形式,其含义与类型通配符上限正好相反,在此不作过多阐述了。

更多java知识请关注java基础教程栏目。

以上是java泛型詳細介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:cnblogs.com。如有侵權,請聯絡admin@php.cn刪除