HashMap 是數組和鍊錶組合組成的複雜結構,哈希值決定了鍵值在數組的位置,當哈希值相同時則以鍊錶形式存儲,當鍊錶長度到達設定的閾值則會對其進行樹化,這樣做是為了確保資料安全和資料相關操作的效率
HashMap 效能表現取決於雜湊碼的有效性,所以hashCode 和equals 的基本約定規則特別重要,如:equals 相等,hashCode 一定要相等;重寫了hashCode 也要重寫equals;hashCode 需要保持一致性,狀態改變回傳的雜湊值仍然要一致;equals 的對稱、反射、傳遞等特性
HashMap 與Hashtable、TreeMap 的差異
HashMap:基於陣列的非同步雜湊表,支援null 鍵或值,是鍵值對存取資料場景的首選
Hashtable:基於數組的同步雜湊表,不支援null鍵或值,因為同步導致效能影響,很少被使用
TreeMap:基於紅黑樹提供順序存取的Map,比HashMap 節省空間,但它的資料操作(查、增、刪)時間複雜度均為:O(log(n)),這點與HashMap 不同。支援空值,當鍵為空時且未實現Comparator 接口,會出現NullPointerException ,實現了Comparator 接口並對null 對象進行判斷可實現正常存入
HashMap、Hashtable、TreeMap 均以鍵值對形式儲存或操作資料元素。 HashMap、TreeMap 繼承自AbstractMap 類,Hashtable 繼承自Dictionary 類,三者皆實作Map 介面
HashMap 原始碼解析
#HashMap()
public HashMap(int initialCapacity, float loadFactor){ // ... this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); }
初始化HashMap 時只設定了一些初始值,但在開始處理資料時,如 .put() 方法內漸漸開始複雜起來
HashMap.put()
public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { // 定义新tab数组及node对象 Node<K,V>[] tab; Node<K,V> p; int n, i; // 如果原table是空的或者未存储任何元素则需要先初始化进行tab的初始化 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // 当数组中对应位置为null时,将新元素放入数组中 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); // 若对应位置不为空时处理哈希冲突 else { Node<K,V> e; K k; // 1 - 普通元素判断: 更新数组中对应位置数据 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; // 2 - 红黑树判断:当p为树的节点时,向树内插入节点 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 3 - 链表判断:插入节点 else { for (int binCount = 0; ; ++binCount) { // 找到尾结点并插入 if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); // 判断链表长度是否达到树化阈值,达到就对链表进行树化 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } // 更新链表中对应位置数据 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } // 如果存在这个映射就覆盖 if (e != null) { // existing mapping for key V oldValue = e.value; // 判断是否允许覆盖,并且value是否为空 if (!onlyIfAbsent || oldValue == null) e.value = value; // 回调以允许LinkedHashMap后置操作 afterNodeAccess(e); return oldValue; } } // 更新修改次数 ++modCount; // 检查数组是否需要进行扩容 if (++size > threshold) resize(); // 回调以允许LinkedHashMap后置操作 afterNodeInsertion(evict); return null; }
當table 為null,會透過 resize() 初始化,且 resize() 有兩個作用,一是創建並初始化table ,二是在table 容量不滿足需求時進行擴容:
if (++size > threshold) resize();
具體的鍵值對儲存位置計算方法為:
if ((p = tab[i = (n - 1) & hash]) == null) // 向数组赋值新元素 tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; // 如果新插入的结点和table中p结点的hash值,key值相同的话 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; // 如果是红黑树结点的话,进行红黑树插入 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { // 代表这个单链表只有一个头部结点,则直接新建一个结点即可 if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); // 链表长度大于8时,将链表转红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; // 及时更新p p = e; } } // 如果存在这个映射就覆盖 if (e != null) { // existing mapping for key V oldValue = e.value; // 判断是否允许覆盖,并且value是否为空 if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); // 回调以允许LinkedHashMap后置操作 return oldValue; } }
留意.put() 方法中的hash 計算,它並不是key 的hashCode ,而是將key 的hashCode 高位資料移位到低位進行異或運算,這樣一些計算出來的哈希值主要差異在高位時的數據,就不會因HashMap 裡哈希尋址時被忽略容量以上的高位,那麼即可有效避免此類情況下的哈希碰撞
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
HashMap.resize()
final Node<K,V>[] resize() { // 把当前底层数组赋值给oldTab,为数据迁移工作做准备 Node<K,V>[] oldTab = table; // 获取当前数组的大小,等于或小于0表示需要初始化数组,大于0表示需要扩容数组 int oldCap = (oldTab == null) ? 0 : oldTab.length; // 获取扩容的阈值(容量*负载系数) int oldThr = threshold; // 定义并初始化新数组长度和目标阈值 int newCap, newThr = 0; // 判断是初始化数组还是扩容,等于或小于0表示需要初始化数组,大于0表示需要扩容数组。若 if(oldCap > 0)=true 表示需扩容而非初始化 if (oldCap > 0) { // 判断数组长度是否已经是最大,MAXIMUM_CAPACITY =(2^30) if (oldCap >= MAXIMUM_CAPACITY) { // 阈值设置为最大 threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) // 目标阈值扩展2倍,数组长度扩展2倍 newThr = oldThr << 1; // double threshold } // 表示需要初始化数组而不是扩容 else if (oldThr > 0) // 说明调用的是HashMap的有参构造函数,因为无参构造函数并没有对threshold进行初始化 newCap = oldThr; // 表示需要初始化数组而不是扩容,零初始阈值表示使用默认值 else { // 说明调用的是HashMap的无参构造函数 newCap = DEFAULT_INITIAL_CAPACITY; // 计算目标阈值 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } // 当目标阈值为0时需重新计算,公式:容量(newCap)*负载系数(loadFactor) if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } // 根据以上计算结果将阈值更新 threshold = newThr; // 将新数组赋值给底层数组 @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; // ------------------------------------------------------------------------------------- // 此时已完成初始化数组或扩容数组,但原数组内的数据并未迁移至新数组(扩容后的数组),之后的代码则是完成原数组向新数组的数据迁移过程 // ------------------------------------------------------------------------------------- // 判断原数组内是否有存储数据,有的话开始迁移数据 if (oldTab != null) { // 开始循环迁移数据 for (int j = 0; j < oldCap; ++j) { Node<K,V> e; // 将数组内此下标中的数据赋值给Node类型的变量e,并判断非空 if ((e = oldTab[j]) != null) { oldTab[j] = null; // 1 - 普通元素判断:判断数组内此下标中是否只存储了一个元素,是的话表示这是一个普通元素,并开始转移 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; // 2 - 红黑树判断:判断此下标内是否是一颗红黑树,是的话进行数据迁移 else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); // 3 - 链表判断:若此下标内包含的数据既不是普通元素又不是红黑树,则它只能是一个链表,进行数据转移 else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } // 返回初始化完成或扩容完成的新数组 return newTab; }
容量和負載係數決定了陣列容量,空餘太多會造成空間浪費,使用太滿會影響操作效能
如果能夠明確知道HashMap 將要存取的鍵值對的數量,可以考慮預先設定適當的容量大小。具體數值我們可以根據擴容發生的條件來做簡單預估,根據前面的程式碼分析,我們知道它需要符合計算條件:負載因子* 容量> 元素數量
所以,預先設定的容量需要滿足,大於預估元素數量/ 負載因子,同時它是2 的冪數
但需要注意的是:
如果沒有特別需求,不要輕易進行更改,因為JDK 自身的預設負載因子是非常符合通用場景的需求的。如果確實需要調整,建議不要設定超過 0.75 的數值,因為會顯著增加衝突,降低 HashMap 的效能。如果使用太小的負載因子,按照上面的公式,預設容量值也進行調整,否則可能會導致更頻繁的擴容,增加無謂的開銷,本身存取效能也會受影響。
HashMap.get()
public V get(Object key) { Node<K,V> e; return (e = getNode(hash(key), key)) == null ? null : e.value; } final Node<K,V> getNode(int hash, Object key) { Node<K,V>[] tab; Node<K,V> first, e; int n; K k; // 将table赋值给变量tab并判断非空 && tab 的厂部大于0 && 通过位运算得到求模结果确定链表的首节点赋值并判断非空 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { // 判断首节点hash值 && 判断key的hash值(地址相同 || equals相等)均为true则表示first即为目标节点直接返回 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 若首节点非目标节点,且还有后续节点时,则继续向后寻找 if ((e = first.next) != null) { // 1 - 树:判断此节点是否为树的节点,是的话遍历树结构查找节点,查找结果可能为null if (first instanceof TreeNode) return ((TreeNode<K,V>)first).getTreeNode(hash, key); // 2 - 链表:若此节点非树节点,说明它是链表,遍历链表查找节点,查找结果可能为null do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
HashMap 為什麼會被樹化
為了確保資料安全及相關操作效率
#因為在元素放置過程中,如果一個物件雜湊衝突,都被放置到同一個桶裡,則會形成一個鍊錶,我們知道鍊錶查詢是線性的,會嚴重影響存取的效能
而在現實世界,建構雜湊衝突的資料並不是非常複雜的事情,惡意程式碼就可以利用這些資料大量與伺服器端交互,導致伺服器端CPU 大量佔用,這就構成了雜湊碰撞拒絕服務攻擊,國內一線網路公司曾發生類似攻擊事件
以上是Java HashMap透析的詳細內容。更多資訊請關注PHP中文網其他相關文章!