大數據學習路線
#java(Java se,javaweb)
Linux(shell ,高同時架構,lucene,solr)
Hadoop(Hadoop,HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume)
機器學習(R,mahout)
Storm(Storm,kafka,redis)
Spark(scala,spark,spark core,spark sql,spark streaming,spark mllib,spark graphx)
Python(python,spark python)
雲端運算平台(docker,kvm,openstack)
名詞解釋:
##一、Linux
lucene: 全文檢索引擎的架構solr: 基於lucene的全文搜尋伺服器,實現了可配置、可擴展並對查詢性能進行了優化,並且提供了一個完善的功能管理介面。二、Hadoop
HDFS: 分散式儲存系統,包含NameNode,DataNode。 NameNode:元數據,DataNode。 DataNode:存數資料。 yarn: 可以理解為MapReduce的協調機制,本質就是Hadoop的處理分析機制,分為ResourceManager NodeManager。 MapReduce: 軟體框架,編寫程式。 Hive: 資料倉儲 可以用SQL查詢,可以執行Map/Reduce程式。用來計算趨勢或網站日誌,不應用於即時查詢,需要很長時間返回結果。 HBase: 資料庫。非常適合用來做大數據的即時查詢。 Facebook以Hbase儲存訊息資料並進行訊息即時的分析 ZooKeeper:針對大型分散式的可靠性協調系統。 Hadoop的分散式同步等靠Zookeeper實現,例如多個NameNode,active standby切換。 Sqoop: 資料庫相互轉移,關係型資料庫和HDFS相互轉移 Mahout:可擴展的機器學習和資料探勘庫。用來做推薦挖掘,聚集,分類,頻繁項集挖掘。 Chukwa: 開源收集系統,監控大型分散式系統,建立在HDFS和Map/Reduce框架之上。顯示、監視、分析結果。 Ambari: 用於設定、管理和監視Hadoop集群,基於Web,介面友善。 相關推薦:《常見問題》
三、Cloudera
Cloudera Manager:管理監控診斷整合Cloudera CDH:(Cloudera's Distribution,including Apache Hadoop) Cloudera對Hadoop做了對應的改變,發行版本稱為CDH。 Cloudera Flume: 日誌收集系統,支援在日誌系統中客製化各類資料發送方,用來收集資料。 Cloudera Impala: 對儲存在Apache Hadoop的HDFS,HBase的資料提供直接查詢互動的SQL。 Cloudera hue: web管理器,包括hue ui,hui server,hui db。 hue提供所有CDH組件的shell介面的接口,可以在hue編寫mr。
四、機器學習/R
R: 用於統計分析、繪圖的語言和操作環境,目前有Hadoop-Rmahout : 提供可擴展的機器學習領域經典演算法的實現,包括聚類、分類、推薦過濾、頻繁子項挖掘等,且可透過Hadoop擴展到雲端。五、storm
Storm: 分散式,容錯的即時串流運算系統,可以用作即時分析,線上機器學習,資訊流處理,連續性計算,分散式RPC,即時處理訊息並更新資料庫。 Kafka: 高吞吐量的分散式發布訂閱訊息系統,可以處理消費者規模的網站中的所有動作流程資料(瀏覽,搜尋等)。相對Hadoop的日誌資料和離線分析,可以實現即時處理。目前透過Hadoop的平行載入機制來統一線上和離線的訊息處理Redis: 由c語言編寫,支援網路、可基於記憶體亦可持久化的日誌型、key-value型資料庫。五、Spark
Scala: 一種類似java的完全物件導向的程式語言。 jblas: 一個快速的線性代數函式庫(JAVA)。基於BLAS與LAPACK,矩陣計算實際的行業標準,並使用先進的基礎設施等所有的計算程序的ATLAS藝術的實現,使其非常快。 Spark: Spark是在Scala語言中實現的類似於Hadoop MapReduce的通用平行框架,除了Hadoop MapReduce所具有的優點,但不同於MapReduce的是job中間輸出結果可以保存在內存中,從而不需要讀寫HDFS,因此Spark能更好的適用於資料探勘與機器學習等需要迭代的MapReduce演算法。可以和Hadoop檔案系統並行運作,用過Mesos的第三方叢集框架可以支援此行為。 Spark SQL: 作為Apache Spark大資料框架的一部分,可用於結構化資料處理並且可以執行類似SQL的Spark資料查詢Spark Streaming: 一種建構在Spark上的即時計算框架,擴展了Spark處理大數據流式資料的能力。Spark MLlib:MLlib是Spark是常用的機器學習演算法的實作庫,目前(2014.05)支援二元分類,迴歸,聚類以及協同過濾。同時也包含一個底層的梯度下降最佳化基礎演算法。 MLlib以來jblas線性代數庫,jblas本身以來遠端的Fortran程式。
Spark GraphX: GraphX是Spark中用於圖和圖表並行計算的API,可以在Spark之上提供一站式資料解決方案,可以方便且有效率地完成圖計算的一整套流水作業。
Fortran: 最早出現的電腦高階程式設計語言,廣泛應用於科學和工程計算領域。
BLAS: 基礎線性代數子程式庫,擁有大量已經寫好的關於線性代數運算的程式。
LAPACK: 著名的公開軟體,包含了求解科學與工程計算中最常見的數值線性代數問題,如求解線性方程組、線性最小平方法問題、特徵值問題和奇異值問題等。
ATLAS: BLAS線性演算法庫的最佳化版本。
Spark Python: Spark是由scala語言編寫的,但是為了推廣和相容,提供了java和python介面。
六、Python
Python: 一種物件導向的、解釋型電腦程式設計語言。
七、雲端運算平台
Docker: 開源的應用程式容器引擎
kvm: (Keyboard Video Mouse)
openstack : 開源的雲端運算管理平台專案
以上是大數據學習路線是什麼的詳細內容。更多資訊請關注PHP中文網其他相關文章!

当您拥有大量数据时,分析数据通常会变得越来越困难。但真的必须如此吗?MicrosoftExcel提供了一个令人惊叹的内置功能,称为数据透视表,可用于轻松分析庞大的数据块。它们可用于通过创建您自己的自定义报告来有效地汇总您的数据。它们可用于自动计算列的总和,可以对其应用过滤器,可以对其中的数据进行排序等。可以对数据透视表执行的操作以及如何使用数据透视表为了缓解您的日常excel障碍是无止境的。继续阅读,了解如何轻松创建数据透视表并了解如何有效组织它。希望你喜欢阅读这篇文章。第1节:什么是数据透视

苹果以其对用户隐私的承诺而闻名。当您购买iPhone或Mac时,您知道您正在投资一家承诺保护您的数据的公司的产品。这在我们这个时代非常重要——因为我们越来越多地将更多的个人信息存储在这些设备上。我们使用的大多数设备都会收集使用数据以改进相应的产品和服务。例如,当应用程序在您的手机上崩溃时,可以通知开发人员以帮助他们查明此错误的原因。虽然这些数据通常是匿名的,但一些用户不喜欢让公司收集他们的日志。此外,通过共享这些诊断信息,您的设备会将它们上传到公司的服务器。这可能会耗尽您的(有限)数据计划和部分

了COLUMNS部分下的字段Item、ROWS部分下的字段Date和VALUES部分下的Profit字段。注意:如果您需要有关数据透视表如何工作以及如何有效地创建数据透视表的更多信息,请参阅我们的文章如何在MicrosoftExcel中创建数据透视表。因此,根据我的选择,我的数据透视表生成如下面的屏幕截图所示,使其成为我想要的完美摘要报告。但是,如果您查看数据透视表,您会发现我的数据透视表中有一些空白单元格。现在,让我们在接下来的步骤中将它们替换为零。第6步:要用零替换空白单元格,首先右键单击数

Microsoft Excel有许多至今令人们惊叹的功能。人们每天都会学到一些新东西。今天,我们将了解如何在Excel图表中添加和自定义数据标签。Excel图表包含大量数据,一眼看懂图表可能具有挑战性。使用数据标签是指出重要信息的好方法。数据标签可以用作柱形图或条形图的一部分。当您创建饼图时,它甚至可以用作标注。添加数据标签为了展示如何添加数据标签,我们将以饼图为例。虽然大多数人使用图例来显示饼图中的内容,但数据标签的效率要高得多。要添加数据标签,请创建饼图。打开它,然后单击显示图表设计

本文主要分享 Datacake 在大数据治理中,AI 算法的应用经验。本次分享分为五大部分:第一部分阐明大数据与 AI 的关系,大数据不仅可以服务于 AI,也可以使用 AI 来优化自身服务,两者是互相支撑、依赖的关系;第二部分介绍利用 AI 模型综合评估大数据任务健康度的应用实践,为后续开展数据治理提供量化依据;第三部分介绍利用 AI 模型智能推荐 Spark 任务运行参数配置的应用实践,实现了提高云资源利用率的目标;第四部分介绍在 SQL 查询场景中,由模型智能推荐任务执行引擎的实践;第五部分

近年来,大数据加大模型成为了AI领域建模的标准范式。在广告场景,大模型由于使用了更多的模型参数,利用更多的训练数据,模型具备了更强的记忆能力和泛化能力,为广告效果向上提升打开了更大的空间。但是大模型在训练过程中所需要的资源也是成倍的增长,存储以及计算上的压力对机器学习平台都是巨大的挑战。腾讯太极机器学习平台持续探索降本增效方案,在广告离线训练场景利用混合部署资源大大降低了资源成本,每天为腾讯广告提供50W核心廉价混合部署资源,帮助腾讯广告离线模型训练资源成本降低30%,同时通过一系列优化手段使得

随着数据规模逐渐增大,大数据分析变得越来越重要。而Go语言作为一门快速、轻量级的编程语言,也成为了越来越多数据科学家和工程师的选择。本文将介绍如何使用Go语言进行大数据分析。数据采集在开始大数据分析之前,我们需要先采集数据。Go语言有很多包可以用于数据采集,例如“net/http”、“io/ioutil”等。通过这些包,我们可以从网站、API、日志

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

Dreamweaver CS6
視覺化網頁開發工具

禪工作室 13.0.1
強大的PHP整合開發環境