首頁 >常見問題 >bootstrap法是什麼意思

bootstrap法是什麼意思

藏色散人
藏色散人原創
2019-07-23 11:31:035353瀏覽

bootstrap法是什麼意思

bootstrap法是什麼意思

在統計學中,bootstrap法即自助法(Bootstrap Method,Bootstrapping ,或自助抽樣法)是一種從給定訓練集中有放回的均勻抽樣,也就是說,每當選中一個樣本,它等可能地被再次選中並被再次添加到訓練集中。

自助法由Bradley Efron於1979年在《Annals of Statistics》發表。當樣本來自總體,能以常態分佈來描述,其抽樣分佈為常態分佈;但當樣本來自的總體無法以常態分佈來描述,則以漸進分析法、自助法等來分析。採用隨機可置換抽樣(random sampling with replacement)。對於小數據集,自助法效果很好。

.632自助法

最常用的一種是.632自助法,假設給定的資料集包含d個樣本。此資料集有放回地抽樣d次,產生d個樣本的訓練集。這樣原始資料樣本中的某些樣本很可能在該樣本集中出現多次。沒有進入該訓練集的樣本最終形成檢驗集(測試集)。顯然每個樣本被選中的機率是1/d,因此未被選中的機率就是(1-1/d),這樣一個樣本在訓練集中沒出現的機率就是d次都未被選中的機率,即( 1-1/d)d。當d趨於無限大時,這個機率就將趨近於e-1=0.368,所以留在訓練集中的樣本大概就佔原來資料集的63.2%。

以上是bootstrap法是什麼意思的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn