搜尋
首頁資料庫Redisredis的hash怎麼實現的

redis的hash怎麼實現的

Jun 24, 2019 am 11:14 AM
hashredis

redis的hash怎麼實現的

0.前言

redis是KV型的記憶體資料庫, 資料庫儲存的核心就是Hash表, 我們執行select指令選擇一個儲存的db之後, 所有的操作都是以hash表為基礎的, 下面會分析下redis的hash資料結構與實作.

#1.hash資料結構

/*Hash表一个节点包含Key,Value数据对 */
typedef struct dictEntry {
    void *key;
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
        double d;
    } v;
    struct dictEntry *next; /* 指向下一个节点, 链接表的方式解决Hash冲突 */
} dictEntry;

/* 存储不同数据类型对应不同操作的回调函数 */
typedef struct dictType {
    unsigned int (*hashFunction)(const void *key);
    void *(*keyDup)(void *privdata, const void *key);
    void *(*valDup)(void *privdata, const void *obj);
    int (*keyCompare)(void *privdata, const void *key1, const void *key2);
    void (*keyDestructor)(void *privdata, void *key);
    void (*valDestructor)(void *privdata, void *obj);
} dictType;

typedef struct dictht {
    dictEntry **table; /* dictEntry*数组,Hash表 */
    unsigned long size; /* Hash表总大小 */
    unsigned long sizemask; /* 计算在table中索引的掩码, 值是size-1 */
    unsigned long used; /* Hash表已使用的大小 */
} dictht;

typedef struct dict {
    dictType *type;
    void *privdata;
    dictht ht[2]; /* 两个hash表,rehash时使用*/
    long rehashidx; /* rehash的索引, -1表示没有进行rehash */
    int iterators; /*  */
} dict;

2.hash資料結構圖

redis的hash怎麼實現的

#3.漸進式hash說明

dict中ht[2]中有兩個hash表, 我們第一次儲存資料的資料時, ht[0]會建立一個最小為4的hash表, 一旦ht[0]中的size和used相等, 則dict中會在ht[1]建立一個size*2大小的hash表, 此時並不會直接將ht[ 0]中的資料copy進ht[0]中, 執行的是漸進式rehash, 即在以後的操作(find, set, get等)中慢慢的copy進去, 以後新加入的元素會加入ht[ 0], 因此在ht[1]被佔滿的時候定能確保ht[0]中所有的資料全部copy到ht[1]中.

4.建立hash表

建立hash表過程非常簡單,直接呼叫dictCreate函數, 分配一塊記憶體,初始化中間變數即可.

dict *dictCreate(dictType *type, void *privDataPtr)
{
     /*分配内存*/
    dict *d = zmalloc(sizeof(*d));
     /*初始化操作*/
    _dictInit(d,type,privDataPtr);
    return d;
}

5.新增元素

hash表中新增元素,先判斷空間是否足夠, 然後計算key對應的hash值, 然後將需要添加的key和value放入表中.

int dictAdd(dict *d, void *key, void *val)
{
     /*添加入hash表中, 返回新添加元素的实体结构体*/
    dictEntry *entry = dictAddRaw(d,key);

    if (!entry) return DICT_ERR;
     /*元素val值放入元素实体结构中*/
    dictSetVal(d, entry, val);
    return DICT_OK;
}
/*
*添加元素实体函数
*/
dictEntry *dictAddRaw(dict *d, void *key)
{
    int index;
    dictEntry *entry;
    dictht *ht;

    if (dictIsRehashing(d)) _dictRehashStep(d);

    /*根据key值计算新元素在hash表中的索引, 返回-1则表示元素已存在, 直接返回NULL*/
    if ((index = _dictKeyIndex(d, key)) == -1)
        return NULL;

    /*如果在进行rehash过程,则新元素添加到ht[1]中, 否则添加到ht[0]中 */
    ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
    entry = zmalloc(sizeof(*entry));
    entry->next = ht->table[index];
    ht->table[index] = entry;
    ht->used++;

    /*设置元素key*/
    dictSetKey(d, entry, key);
    return entry;
}
/*
*计算索引的函数
*/
static int _dictKeyIndex(dict *d, const void *key)
{
    unsigned int h, idx, table;
    dictEntry *he;

    /* 判断hash表是否空间足够, 不足则需要扩展 */
    if (_dictExpandIfNeeded(d) == DICT_ERR)
        return -1;
         
    /* 计算key对应的hash值 */
    h = dictHashKey(d, key);
    for (table = 0; table <= 1; table++) {
          /*计算索引*/
        idx = h & d->ht[table].sizemask;
        /*遍历冲突列表, 判断需要查找的key是否已经在冲突列表中*/
        he = d->ht[table].table[idx];
        while(he) {
            if (dictCompareKeys(d, key, he->key))
                return -1;
            he = he->next;
        }
        if (!dictIsRehashing(d)) break;
    }
    return idx;
}
/*
*判断hash表是否需要扩展空间
*/
static int _dictExpandIfNeeded(dict *d)
{
    /*redis的rehash采用的渐进式hash, rehash时分配了原来两倍的内存空间, 在rehash阶段空间必定够用*/
    if (dictIsRehashing(d)) return DICT_OK;

    /* hash表是空的需要初始化空间, 默认是4*/
    if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);

    /* 已使用空间满足不了设置的条件*/
    if (d->ht[0].used >= d->ht[0].size &&
        (dict_can_resize ||
         d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
    {
          /*扩展空间, 使用空间的两倍*/
        return dictExpand(d, d->ht[0].used*2);
    }
    return DICT_OK;
}

/*
*扩展空间或者初始化hash表空间
*/
int dictExpand(dict *d, unsigned long size)
{
    dictht n;
     /* 对需要分配大小圆整为2的倍数 */
    unsigned long realsize = _dictNextPower(size);

    /* 如果空间足够则表明调用错误 */
    if (dictIsRehashing(d) || d->ht[0].used > size)
        return DICT_ERR;

    n.size = realsize;
    n.sizemask = realsize-1;
    n.table = zcalloc(realsize*sizeof(dictEntry*));
    n.used = 0;
    
     /*hash表为空初始化hash表*/
    if (d->ht[0].table == NULL) {
        d->ht[0] = n;
        return DICT_OK;
    }

    /*新分配的空间放入ht[1], 后面一步一步进行rehash*/
    d->ht[1] = n;
    d->rehashidx = 0;
    return DICT_OK;
}

6.查找元素

查找元素過程,首先計算hash值, 然後計算在ht[0]和ht[1]中索引位置, 進行查找.

dictEntry *dictFind(dict *d, const void *key)
{
    dictEntry *he;
    unsigned int h, idx, table;

    if (d->ht[0].size == 0) return NULL;
    
     /*如果正在进行rehash, 执行一次rehash*/
    if (dictIsRehashing(d)) _dictRehashStep(d);
    
    h = dictHashKey(d, key);
    
     /*由于可能正在rehash, 因此要从ht[0]和ht[1]中分别进行查找, 找不到返回NULL*/
    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        he = d->ht[table].table[idx];
          /*遍历冲突列表查找元素*/
        while(he) {
            if (dictCompareKeys(d, key, he->key))
                return he;
            he = he->next;
        }
        if (!dictIsRehashing(d)) return NULL;
    }
    return NULL;
}

7.刪除元素

刪除元素首先查找元素, 然後將元素從hash表中移除即可, 呼叫dictDelete刪除元素, 會同時刪除元素所佔空間

int dictDelete(dict *ht, const void *key) {
    return dictGenericDelete(ht,key,0);
}

static int dictGenericDelete(dict *d, const void *key, int nofree)
{
    unsigned int h, idx;
    dictEntry *he, *prevHe;
    int table;

    if (d->ht[0].size == 0) return DICT_ERR;
    
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);

    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        he = d->ht[table].table[idx];
        prevHe = NULL;
          /*查找元素到元素,进行删除操作, 并释放占用的内存*/
        while(he) {
            if (dictCompareKeys(d, key, he->key)) {
                /* Unlink the element from the list */
                if (prevHe)
                    prevHe->next = he->next;
                else
                    d->ht[table].table[idx] = he->next;
                if (!nofree) {
                    dictFreeKey(d, he);
                    dictFreeVal(d, he);
                }
                zfree(he);
                d->ht[table].used--;
                return DICT_OK;
            }
            prevHe = he;
            he = he->next;
        }
        if (!dictIsRehashing(d)) break;
    }
    return DICT_ERR; /* not found */
}

hash指令

hash指令操作都比較簡單,需要注意的是當我們建立hash表示預設儲存結構,不是dict,而是ziplist結構,可以參考redis之Ziplist資料結構,hash_max_ziplist_entries和hash_max_ziplist_value值作為閥值,hash_max_ziplist_entries表示一旦ziplist中元素數量超過該值,則需要轉換為diccigmaxv_vvmax表示一旦ziplist中資料長度大於該值,則需要轉換為dict結構。

更多Redis相關技術文章,請造訪Redis教學欄位學習!

以上是redis的hash怎麼實現的的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
REDIS:探索其功能和功能REDIS:探索其功能和功能Apr 19, 2025 am 12:04 AM

Redis脫穎而出是因為其高速、多功能性和豐富的數據結構。 1)Redis支持字符串、列表、集合、散列和有序集合等數據結構。 2)它通過內存存儲數據,支持RDB和AOF持久化。 3)從Redis6.0開始引入多線程處理I/O操作,提升了高並發場景下的性能。

Redis是SQL還是NOSQL數據庫?答案解釋了Redis是SQL還是NOSQL數據庫?答案解釋了Apr 18, 2025 am 12:11 AM

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

REDIS:提高應用程序性能和可擴展性REDIS:提高應用程序性能和可擴展性Apr 17, 2025 am 12:16 AM

Redis通過緩存數據、實現分佈式鎖和數據持久化來提升應用性能和可擴展性。 1)緩存數據:使用Redis緩存頻繁訪問的數據,提高數據訪問速度。 2)分佈式鎖:利用Redis實現分佈式鎖,確保在分佈式環境中操作的安全性。 3)數據持久化:通過RDB和AOF機制保證數據安全性,防止數據丟失。

REDIS:探索其數據模型和結構REDIS:探索其數據模型和結構Apr 16, 2025 am 12:09 AM

Redis的數據模型和結構包括五種主要類型:1.字符串(String):用於存儲文本或二進制數據,支持原子操作。 2.列表(List):有序元素集合,適合隊列和堆棧。 3.集合(Set):無序唯一元素集合,支持集合運算。 4.有序集合(SortedSet):帶分數的唯一元素集合,適用於排行榜。 5.哈希表(Hash):鍵值對集合,適合存儲對象。

REDIS:對其數據庫方法進行分類REDIS:對其數據庫方法進行分類Apr 15, 2025 am 12:06 AM

Redis的數據庫方法包括內存數據庫和鍵值存儲。 1)Redis將數據存儲在內存中,讀寫速度快。 2)它使用鍵值對存儲數據,支持複雜數據結構,如列表、集合、哈希表和有序集合,適用於緩存和NoSQL數據庫。

為什麼要使用redis?利益和優勢為什麼要使用redis?利益和優勢Apr 14, 2025 am 12:07 AM

Redis是一個強大的數據庫解決方案,因為它提供了極速性能、豐富的數據結構、高可用性和擴展性、持久化能力以及廣泛的生態系統支持。 1)極速性能:Redis的數據存儲在內存中,讀寫速度極快,適合高並發和低延遲應用。 2)豐富的數據結構:支持多種數據類型,如列表、集合等,適用於多種場景。 3)高可用性和擴展性:支持主從復制和集群模式,實現高可用性和水平擴展。 4)持久化和數據安全:通過RDB和AOF兩種方式實現數據持久化,確保數據的完整性和可靠性。 5)廣泛的生態系統和社區支持:擁有龐大的生態系統和活躍社區,

了解NOSQL:Redis的關鍵特徵了解NOSQL:Redis的關鍵特徵Apr 13, 2025 am 12:17 AM

Redis的關鍵特性包括速度、靈活性和豐富的數據結構支持。 1)速度:Redis作為內存數據庫,讀寫操作幾乎瞬時,適用於緩存和會話管理。 2)靈活性:支持多種數據結構,如字符串、列表、集合等,適用於復雜數據處理。 3)數據結構支持:提供字符串、列表、集合、哈希表等,適合不同業務需求。

REDIS:確定其主要功能REDIS:確定其主要功能Apr 12, 2025 am 12:01 AM

Redis的核心功能是高性能的內存數據存儲和處理系統。 1)高速數據訪問:Redis將數據存儲在內存中,提供微秒級別的讀寫速度。 2)豐富的數據結構:支持字符串、列表、集合等,適應多種應用場景。 3)持久化:通過RDB和AOF方式將數據持久化到磁盤。 4)發布訂閱:可用於消息隊列或實時通信系統。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器