備註: 此文章的資料量在100W,如果想要千萬級,調大數量即可,但是不要大量使用rand() 或uuid() 會導致效能下降
背景
在進行查詢操作的效能測試或sql優化時,我們經常需要在線下環境建立大量的基礎資料供我們測試,模擬線上的真實環境。
廢話,總不能讓我去線上去測試吧,會被DBA砍死的
創建測試資料的方式
1. 编写代码,通过代码批量插库(本人使用过,步骤太繁琐,性能不高,不推荐) 2. 编写存储过程和函数执行(本文实现方式1) 3. 临时数据表方式执行 (本文实现方式2,强烈推荐该方式,非常简单,数据插入快速,100W,只需几秒) 4. 一行一行手动插入,(WTF,去死吧)
建立基礎表結構
不管用何種方式,我要插在那張表總是要建立的吧
CREATE TABLE `t_user` ( `id` int(11) NOT NULL AUTO_INCREMENT, `c_user_id` varchar(36) NOT NULL DEFAULT '', `c_name` varchar(22) NOT NULL DEFAULT '', `c_province_id` int(11) NOT NULL, `c_city_id` int(11) NOT NULL, `create_time` datetime NOT NULL, PRIMARY KEY (`id`), KEY `idx_user_id` (`c_user_id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
方式1: 採用預存程序和記憶體表
建立記憶體表
利用 MySQL 内存表插入速度快的特点,我们先利用函数和存储过程在内存表中生成数据,然后再从内存表插入普通表中 CREATE TABLE `t_user_memory` ( `id` int(11) NOT NULL AUTO_INCREMENT, `c_user_id` varchar(36) NOT NULL DEFAULT '', `c_name` varchar(22) NOT NULL DEFAULT '', `c_province_id` int(11) NOT NULL, `c_city_id` int(11) NOT NULL, `create_time` datetime NOT NULL, PRIMARY KEY (`id`), KEY `idx_user_id` (`c_user_id`) ) ENGINE=MEMORY DEFAULT CHARSET=utf8mb4;
#建立函數與預存程序
##
# 创建随机字符串和随机时间的函数 mysql> delimiter $$ mysql> CREATE DEFINER=`root`@`%` FUNCTION `randStr`(n INT) RETURNS varchar(255) CHARSET utf8mb4 -> DETERMINISTIC -> BEGIN -> DECLARE chars_str varchar(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'; -> DECLARE return_str varchar(255) DEFAULT '' ; -> DECLARE i INT DEFAULT 0; -> WHILE i SET return_str = concat(return_str, substring(chars_str, FLOOR(1 + RAND() * 62), 1)); -> SET i = i + 1; -> END WHILE; -> RETURN return_str; -> END$$ Query OK, 0 rows affected (0.00 sec) mysql> CREATE DEFINER=`root`@`%` FUNCTION `randDataTime`(sd DATETIME,ed DATETIME) RETURNS datetime -> DETERMINISTIC -> BEGIN -> DECLARE sub INT DEFAULT 0; -> DECLARE ret DATETIME; -> SET sub = ABS(UNIX_TIMESTAMP(ed)-UNIX_TIMESTAMP(sd)); -> SET ret = DATE_ADD(sd,INTERVAL FLOOR(1+RAND()*(sub-1)) SECOND); -> RETURN ret; -> END $$ mysql> delimiter ; # 创建插入数据存储过程 mysql> CREATE DEFINER=`root`@`%` PROCEDURE `add_t_user_memory`(IN n int) -> BEGIN -> DECLARE i INT DEFAULT 1; -> WHILE (i INSERT INTO t_user_memory (c_user_id, c_name, c_province_id,c_city_id, create_time) VALUES (uuid(), randStr(20), FLOOR(RAND() * 1000), FLOOR(RAND() * 100), NOW()); -> SET i = i + 1; -> END WHILE; -> END -> $$ Query OK, 0 rows affected (0.01 sec)
- 呼叫預存程序
mysql> CALL add_t_user_memory(1000000); ERROR 1114 (HY000): The table 't_user_memory' is full 出现内存已满时,修改 max_heap_table_size 参数的大小,我使用64M内存,插入了22W数据,看情况改,不过这个值不要太大,默认32M或者64M就好,生产环境不要乱尝试
- 從記憶體表插入普通表
mysql> INSERT INTO t_user SELECT * FROM t_user_memory; Query OK, 218953 rows affected (1.70 sec) Records: 218953 Duplicates: 0 Warnings: 0方式2:採用臨時表
- 建立臨時資料表tmp_table
mysql> INSERT INTO t_user SELECT * FROM t_user_memory; Query OK, 218953 rows affected (1.70 sec) Records: 218953 Duplicates: 0 Warnings: 0
- 用python或bash 產生100w 記錄的資料檔( python瞬間就會生成完)
python(推荐): python -c "for i in range(1, 1+1000000): print(i)" > base.txt
- 導入資料到臨時表tmp_table中
mysql> load data infile '/Users/LJTjintao/temp/base.txt' replace into table tmp_table; Query OK, 1000000 rows affected (2.55 sec) Records: 1000000 Deleted: 0 Skipped: 0 Warnings: 0 千万级数据 20秒插入完成
#注意: 導入資料時有可能會報錯,原因是mysql預設沒有開secure_file_priv( 這個參數用來限制資料導入和匯出操作的效果,例如執行LOAD DATA、SELECT … INTO OUTFILE語句和 LOAD_FILE()函數。這些操作需要使用者具有FILE權限。)
解決方案:在mysql的設定檔中(my.ini 或my.conf)中加入secure_file_priv = /Users/LJTjintao/temp/`, 然後重新啟動mysql 解決
- #以臨時表為基礎數據,插入數據到t_user中,100W數據插入需要10.37s
mysql> INSERT INTO t_user -> SELECT -> id, -> uuid(), -> CONCAT('userNickName', id), -> FLOOR(Rand() * 1000), -> FLOOR(Rand() * 100), -> NOW() -> FROM -> tmp_table; Query OK, 1000000 rows affected (10.37 sec) Records: 1000000 Duplicates: 0 Warnings: 0
- 更新建立時間欄位讓插入的資料的建立時間更隨機
UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year); Query OK, 1000000 rows affected (5.21 sec) Rows matched: 1000000 Changed: 1000000 Warnings: 0 mysql> UPDATE t_user SET create_time=date_add(create_time, interval FLOOR(1 + (RAND() * 7)) year); Query OK, 1000000 rows affected (4.77 sec) Rows matched: 1000000 Changed: 1000000 Warnings: 0
mysql> select * from t_user limit 30; +----+--------------------------------------+----------------+---------------+-----------+---------------------+ | id | c_user_id | c_name | c_province_id | c_city_id | create_time | +----+--------------------------------------+----------------+---------------+-----------+---------------------+ | 1 | bf5e227a-7b84-11e9-9d6e-751d319e85c2 | userNickName1 | 84 | 64 | 2015-11-13 21:13:19 | | 2 | bf5e26f8-7b84-11e9-9d6e-751d319e85c2 | userNickName2 | 967 | 90 | 2019-11-13 20:19:33 | | 3 | bf5e2810-7b84-11e9-9d6e-751d319e85c2 | userNickName3 | 623 | 40 | 2014-11-13 20:57:46 | | 4 | bf5e2888-7b84-11e9-9d6e-751d319e85c2 | userNickName4 | 140 | 49 | 2016-11-13 20:50:11 | | 5 | bf5e28f6-7b84-11e9-9d6e-751d319e85c2 | userNickName5 | 47 | 75 | 2016-11-13 21:17:38 | | 6 | bf5e295a-7b84-11e9-9d6e-751d319e85c2 | userNickName6 | 642 | 94 | 2015-11-13 20:57:36 | | 7 | bf5e29be-7b84-11e9-9d6e-751d319e85c2 | userNickName7 | 780 | 7 | 2015-11-13 20:55:07 | | 8 | bf5e2a4a-7b84-11e9-9d6e-751d319e85c2 | userNickName8 | 39 | 96 | 2017-11-13 21:42:46 | | 9 | bf5e2b58-7b84-11e9-9d6e-751d319e85c2 | userNickName9 | 731 | 74 | 2015-11-13 22:48:30 | | 10 | bf5e2bb2-7b84-11e9-9d6e-751d319e85c2 | userNickName10 | 534 | 43 | 2016-11-13 22:54:10 | | 11 | bf5e2c16-7b84-11e9-9d6e-751d319e85c2 | userNickName11 | 572 | 55 | 2018-11-13 20:05:19 | | 12 | bf5e2c70-7b84-11e9-9d6e-751d319e85c2 | userNickName12 | 71 | 68 | 2014-11-13 20:44:04 | | 13 | bf5e2cca-7b84-11e9-9d6e-751d319e85c2 | userNickName13 | 204 | 97 | 2019-11-13 20:24:23 | | 14 | bf5e2d2e-7b84-11e9-9d6e-751d319e85c2 | userNickName14 | 249 | 32 | 2019-11-13 22:49:43 | | 15 | bf5e2d88-7b84-11e9-9d6e-751d319e85c2 | userNickName15 | 900 | 51 | 2019-11-13 20:55:26 | | 16 | bf5e2dec-7b84-11e9-9d6e-751d319e85c2 | userNickName16 | 854 | 74 | 2018-11-13 22:07:58 | | 17 | bf5e2e50-7b84-11e9-9d6e-751d319e85c2 | userNickName17 | 136 | 46 | 2013-11-13 21:53:34 | | 18 | bf5e2eb4-7b84-11e9-9d6e-751d319e85c2 | userNickName18 | 897 | 10 | 2018-11-13 20:03:55 | | 19 | bf5e2f0e-7b84-11e9-9d6e-751d319e85c2 | userNickName19 | 829 | 83 | 2013-11-13 20:38:54 | | 20 | bf5e2f68-7b84-11e9-9d6e-751d319e85c2 | userNickName20 | 683 | 91 | 2019-11-13 20:02:42 | | 21 | bf5e2fcc-7b84-11e9-9d6e-751d319e85c2 | userNickName21 | 511 | 81 | 2013-11-13 21:16:48 | | 22 | bf5e3026-7b84-11e9-9d6e-751d319e85c2 | userNickName22 | 562 | 35 | 2019-11-13 20:15:52 | | 23 | bf5e3080-7b84-11e9-9d6e-751d319e85c2 | userNickName23 | 91 | 39 | 2016-11-13 20:28:59 | | 24 | bf5e30da-7b84-11e9-9d6e-751d319e85c2 | userNickName24 | 677 | 21 | 2016-11-13 21:37:15 | | 25 | bf5e3134-7b84-11e9-9d6e-751d319e85c2 | userNickName25 | 50 | 60 | 2018-11-13 20:39:20 | | 26 | bf5e318e-7b84-11e9-9d6e-751d319e85c2 | userNickName26 | 856 | 47 | 2018-11-13 21:24:53 | | 27 | bf5e31e8-7b84-11e9-9d6e-751d319e85c2 | userNickName27 | 816 | 65 | 2014-11-13 22:06:26 | | 28 | bf5e324c-7b84-11e9-9d6e-751d319e85c2 | userNickName28 | 806 | 7 | 2019-11-13 20:17:30 | | 29 | bf5e32a6-7b84-11e9-9d6e-751d319e85c2 | userNickName29 | 973 | 63 | 2014-11-13 21:08:09 | | 30 | bf5e3300-7b84-11e9-9d6e-751d319e85c2 | userNickName30 | 237 | 29 | 2018-11-13 21:48:17 | +----+--------------------------------------+----------------+---------------+-----------+---------------------+ 30 rows in set (0.01 sec)
更多MySQL相關技術文章,請造訪MySQL教學欄位進行學習!
以上是MySQL 快速創建千萬級測試數據的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于架构原理的相关内容,MySQL Server架构自顶向下大致可以分网络连接层、服务层、存储引擎层和系统文件层,下面一起来看一下,希望对大家有帮助。

mysql的msi与zip版本的区别:1、zip包含的安装程序是一种主动安装,而msi包含的是被installer所用的安装文件以提交请求的方式安装;2、zip是一种数据压缩和文档存储的文件格式,msi是微软格式的安装包。

方法:1、利用right函数,语法为“update 表名 set 指定字段 = right(指定字段, length(指定字段)-1)...”;2、利用substring函数,语法为“select substring(指定字段,2)..”。

在mysql中,可以利用char()和REPLACE()函数来替换换行符;REPLACE()函数可以用新字符串替换列中的换行符,而换行符可使用“char(13)”来表示,语法为“replace(字段名,char(13),'新字符串') ”。

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于MySQL复制技术的相关问题,包括了异步复制、半同步复制等等内容,下面一起来看一下,希望对大家有帮助。

转换方法:1、利用cast函数,语法“select * from 表名 order by cast(字段名 as SIGNED)”;2、利用“select * from 表名 order by CONVERT(字段名,SIGNED)”语句。

在mysql中,可以利用REGEXP运算符判断数据是否是数字类型,语法为“String REGEXP '[^0-9.]'”;该运算符是正则表达式的缩写,若数据字符中含有数字时,返回的结果是true,反之返回的结果是false。

在mysql中,可利用“ALTER TABLE 表名 DROP INDEX unique key名”语句来删除unique key;ALTER TABLE语句用于对数据进行添加、删除或修改操作,DROP INDEX语句用于表示删除约束操作。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

WebStorm Mac版
好用的JavaScript開發工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器