硬碟效能的技術指標,包括硬碟容量、硬碟速度、硬碟轉速、介面、快取、硬碟單碟容量等。
硬碟介面
ATA 全名為Advanced Technology Attachment,是用傳統的40-pin 並口數據線連接主機板與硬碟的,外部介面速度最大為133MB/s ,因為並口線的抗干擾性太差,且排線佔空間,不利電腦散熱,將逐漸被 SATA所取代。
IDE
IDE的英文全稱為“Integrated Drive Electronics”,即“電子整合驅動器”,俗稱PATA並口。
SATA
使用SATA(Serial ATA)埠的硬碟又叫串列埠硬碟,是未來PC機硬碟的趨勢。 2001年,由Intel、APT、Dell、IBM、希捷、邁拓這幾大廠商組成的Serial ATA委員會正式確立了Serial ATA 1.0規範,2002年,雖然串行ATA的相關設備還未正式上市,但Serial ATA委員會已搶先確立了Serial ATA 2.0規範。 Serial ATA採用串列連接方式,串列ATA匯流排使用嵌入式時脈訊號,具備了更強的糾錯能力,與以往相比其最大的差異在於能對傳輸指令(不只是資料)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了資料傳輸的可靠性。串行介面還具有結構簡單、支援熱插拔的優點。
SATA2
希捷在SATA的基礎上加入NCQ本機指令陣列技術,並提高了磁碟速率。
SCSI 全稱為Small Computer System Interface(小型機系統介面),歷經多世代的發展,從早期的SCSI-II,到目前的Ultra320 SCSI 以及Fiber-Channel (光纖通道),接頭類型也有多種。 SCSI 硬碟廣為工作站級個人電腦以及伺服器所使用,因為它的轉速快,可達 15000 rpm,且資料傳輸時佔用 CPU 運算資源較低,但是單價也比同樣容量的 ATA 及 SATA 硬碟昂貴。
SAS(Serial Attached SCSI)是新世代的SCSI技術,和SATA硬碟相同,都是採取序列式技術以獲得更高的傳輸速度,可達到3Gb/s。此外也透過縮小連接線改善系統內部空間等。
此外,由於SAS硬碟可以與SATA硬碟共用相同的背板,因此在同一個SAS儲存系統 中,可以用SATA硬碟來取代部分昂貴的SCSI硬碟,節省整體的儲存成本。
硬碟尺寸
5.25吋硬碟;早期用於桌上型電腦,已退出歷史舞台。
3.5吋桌上型電腦硬碟;風頭正勁,廣泛用作各式電腦。
2.5吋筆記型電腦硬碟;廣泛用於筆記型電腦,桌上型一體機,行動硬碟及便攜式硬碟播放器。
1.8吋微型硬碟;廣泛用於超薄筆記型電腦,行動硬碟及蘋果播放器。
1.3吋微型硬碟;產品單一,三星獨有技術,僅用於三星的行動硬碟。
1.0吋微型硬碟;最早由IBM公司開發, MicroDrive微硬碟(簡稱MD)。因符合CFII標準,所以廣泛用於單眼數位相機。
0.85吋微型硬碟;產品單一,日立獨有技術,已知僅用於日立的一款硬碟手機。
硬碟的物理結構
1、磁頭
硬碟內部結構磁頭是硬碟中最昂貴的元件,也是硬碟技術中最重要、最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,因而造成了硬碟設計上的限制。而MR磁頭(Magnetoresistive heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫入操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫入、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行最佳化,以獲得最佳的讀/寫效能。另外,MR磁頭是透過阻值變化而非電流變化去感應訊號幅度,因而對訊號變化相當敏感,讀取資料的準確度也隨之提高。而且由於讀取的訊號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了盤片密度,達到200MB/英吋2,而使用傳統的磁頭只能達到20MB/英吋2,這也是MR磁頭被廣泛應用的最主要原因。目前,MR磁頭已被廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant Magnetoresistive heads)也逐漸普及。
2、磁軌
當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁道用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊鄰的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5吋軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠大於此值,通常一面有成千上萬個磁軌。
3、磁區
磁碟上的每個磁軌被等分為若干個弧段,這些弧段就是磁碟的磁區,每個磁區區可以存放512個位元組的信息,磁碟機在向磁碟讀取和寫入資料時,要以磁區為單位。 1.44MB3.5吋的軟碟,每個磁軌分為18個磁區。
4、柱面
硬碟通常由重疊的一組磁碟片構成,每個盤面都被分割成數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱為磁碟的柱面。磁碟的柱面數與一個盤面上的磁軌數是相等的。由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數*磁頭數*扇區數*512B。
硬碟的邏輯結構
##1. 硬碟參數釋疑
到目前為止, 人們常說的硬碟參數還是古老的CHS(Cylinder/Head/Sector)參數。那為什麼要使用這些參數,它們的意義是什麼?它們的取值範圍是什麼?很久以前, 硬碟的容量還非常小的時候,人們採用與軟碟類似的結構生產硬碟。也就是硬碟盤片的每一條磁軌都具有相同的磁區數。由此產生了所謂的3D參數 (Disk Geometry). 既磁頭數(Heads),柱面數(Cylinders),扇區數(Sectors),以及相應的尋址方式。 其中:磁頭數(Heads)表示硬碟總共有幾個磁頭,也就是有幾面磁碟片, 最大為255 (用8 個二進位位元儲存);柱面數(Cylinders) 表示硬碟每一面盤片上有幾條磁軌,最大為1023(用10 個二進位位儲存);磁區數(Sectors) 表示每一條磁軌上有幾個磁區, 最大為63(用6個二進位位元儲存);每個磁區一般是512個位元組, 理論上講這不是必須的,但好像沒有取別的值的。 所以磁盤最大容量為:255 * 1023 * 63 * 512 / 1048576 = 7.837 GB ( 1M =1048576 Bytes )或硬盤廠商常用的單位:255 * 1023 * 63 * 512 / 1000000 = 8.414 GB ( 1M =1000000 Bytes )在CHS 尋址方式中,磁頭,柱面,扇區的取值範圍分別為0到Heads - 1。00到Cylinders - 1。 1 到 Sectors (注意是從 1 開始)。
2. 基本Int 13H 調用簡介
BIOS Int 13H 調用是BIOS提供的磁碟基本輸入輸出中斷調用,它可以完成磁碟(包括硬碟和軟碟)的重位,讀寫,校驗,定位,診,格式化等功能。它使用的就是 CHS 尋址方式, 因此最大識能存取 8 GB 左右的硬碟 (本文中如不作特殊說明,均以 1M = 1048576 位元組為單位)。3. 現代硬碟結構簡介
在老式硬碟中,由於每個磁軌的磁區數相等,所以外道的記錄密度要遠低於內道, 因此會浪費很多磁碟空間(與軟碟一樣)。為了解決這個問題,進一步提高硬碟容量,人們改用等密度結構生產硬碟。也就是說,外圈磁軌的磁區比內圈磁軌多,採用此結構後,硬碟不再具有實際的3D參數,尋址方式也改為線性定址,也就是以磁區為單位進行定址。 為了與使用3D尋址的老軟體相容(如使用BIOSInt13H介面的軟體), 在硬碟控制器內部安裝了一個位址翻譯器,由它負責將老式3D參數翻譯成新的線性參數。這也是為什麼現在硬碟的3D參數可以有多種選擇的原因(不同的工作模式,對應不同的3D參數, 如 LBA,LARGE,NORMAL)。4. 擴充 Int 13H 簡介
雖然現代硬碟都已經採用了線性尋址,但是由於基本Int13H 的製約,使用BIOS Int 13H 介面的程序,如DOS 等還只能存取8 G以內的硬碟空間。為了打破這個限制, Microsoft 等幾家公司製定了擴展Int 13H 標準(Extended Int13H),採用線性尋址方式訪問硬碟, 所以突破了8 G的限制,而且還加入了對可拆卸介質(如活動硬碟) 的支援。硬碟的基本參數
一、容量
作為電腦系統的資料記憶體,容量是硬碟最主要的參數。硬碟的容量以兆位元組(MB)或千兆位元組(GB)為單位,1GB=1024MB。但硬碟廠商在標稱硬碟容量時通常取1G=1000MB,因此我們在BIOS中或在格式化硬碟時看到的容量會比廠商的標稱值小。
硬碟的容量指標也包含硬碟的單碟容量。所謂單碟容量是指硬碟單晶片的容量,單碟容量越大,單位成本越低,平均存取時間也越短。
對於使用者而言,硬碟的容量就像記憶體一樣,永遠只會嫌少不會嫌多。 Windows作業系統帶給我們的除了更簡單的操作外,還帶來了檔案大小與數量的日益膨脹,一些應用程式動輒就要吃掉上百兆的硬碟空間,而且還有不斷增大的趨勢。因此,在購買硬碟時適當的超前是明智的。近兩年主流硬碟是80G,而160G以上的大容量硬碟也開始逐漸普及。
一般情況下硬碟容量越大,單位位元組的價格就越便宜,但是超出主流容量的硬碟略微例外。時至2008年12月初,1TB(1000GB)的希捷硬碟中關村報價是¥700元,500G的硬碟大概是¥320元。
二、轉速
轉速(Rotationl Speed 或Spindle speed),是硬碟內馬達主軸的旋轉速度,也就是硬碟片在一分鐘內所能完成的最大轉數。轉速的快慢是標示硬碟檔次的重要參數之一,它是決定硬碟內部傳輸速率的關鍵因素之一,在很大程度上直接影響硬碟的速度。硬碟的轉速越快,硬碟尋找檔案的速度就越快,相對的硬碟的傳輸速度也就提高了。硬碟轉速以每分鐘多少轉來表示,單位表示為RPM,RPM是Revolutions Per minute的縮寫,是轉/每分鐘。 RPM值越大,內部傳輸速率就越快,存取時間就越短,硬碟的整體效能也越好。
硬碟的主軸馬達帶動盤片高速旋轉,產生浮力使磁頭飄浮在盤片上方。要將所要存取資料的磁區帶到磁頭下方,轉速越快,等待時間也越短。因此轉速在很大程度上決定了硬碟的速度。
家用的普通硬碟的轉速一般有5400rpm、7200rpm幾種,高轉速硬碟也是現在台式機用戶的首選;而對於筆記本用戶則是4200rpm、5400rpm為主,雖然已經有公司發布了7200rpm的筆記型電腦硬碟,但在市場中還較為少見;伺服器使用者對硬碟效能要求最高,伺服器中所使用的SCSI硬碟轉速基本上都採用10000rpm,甚至還有15000rpm的,效能要超出家用產品很多。較高的轉速可縮短硬碟的平均尋道時間和實際讀寫時間,但隨著硬碟轉速的不斷提高也帶來了溫度升高、馬達主軸磨損加大、工作噪音增大等負面影響。筆電硬碟轉速低於桌上型電腦硬碟,一定程度上是受到這個因素的影響。筆記本內部空間狹小,筆電硬碟的尺寸(2.5吋)也被設計的比桌上型電腦硬碟(3.5吋)小,轉速提高造成的溫度上升,對筆電本身的散熱性能提出了更高的要求;噪音變大,又必須採取必要的降噪措施,這些都對筆記本硬碟製造技術提出了更多的要求。同時轉速的提高,而其它的維持不變,則意味著馬達的功耗將增大,單位時間內消耗的電力就越多,電池的工作時間縮短,這樣筆記本的便攜性就受到影響。所以筆記本硬碟一般都採用相對較低轉速的4200rpm硬碟。
轉速是隨著硬碟馬達的提高而改變的,現在液態軸承馬達(Fluid dynamic bearing motors)已全面代替了傳統的滾珠軸承馬達。液態軸承馬達通常是應用於精密機械工業上,它使用的是黏膜液油軸承,以油膜代替滾珠。這樣可以避免金屬面的直接摩擦,將噪音及溫度減至最低;同時油膜可有效吸收震動,使抗震能力提高;更可減少磨損,提高壽命。
三、平均存取時間
平均存取時間(Average Access Time)是指磁頭從起始位置到達目標磁軌位置,並且從目標磁軌上找到要讀寫的資料扇區所需的時間。
平均存取時間反映了硬碟的讀寫速度,它包括了硬碟的尋道時間和等待時間,即:平均存取時間=平均尋道時間 平均等待時間。
硬碟的平均尋道時間(Average Seek Time)是指硬碟的磁頭移動到碟面指定磁軌所需的時間。這個時間當然越小越好,目前硬碟的平均尋道時間通常在8ms到12ms之間,而SCSI硬碟則要小於或等於8ms。
硬碟的等待時間,又叫潛伏期(Latency),是指磁頭已處於要存取的磁軌,等待所要存取的磁區旋轉至磁頭下方的時間。平均等待時間為盤片旋轉一週所需的時間的一半,一般應在4ms以下。
四、傳輸速率
傳輸速率(Data Transfer Rate) 硬碟的資料傳輸率是指硬碟讀寫資料的速度,單位為兆位元組每秒(MB/s)。硬碟資料傳輸率又包括了內部資料傳輸率和外部資料傳輸率。
內部傳輸率(Internal Transfer Rate) 也稱為持續傳輸率(Sustained Transfer Rate),它反映了硬碟緩衝區未用時的效能。內部傳輸率主要依賴硬碟的旋轉速度。
外部傳輸率(External Transfer Rate)也稱為突發資料傳輸率(Burst Data Transfer Rate)或介面傳輸率,它標稱的是系統匯流排與硬碟緩衝區之間的資料傳輸率,外部資料傳輸率與硬碟介面類型和硬碟快取的大小有關。
目前Fast ATA介面硬碟的最大外部傳輸率為16.6MB/s,而Ultra ATA介面的硬碟則達到33.3MB/s。
使用SATA(Serial ATA)埠的硬碟又叫串列式硬碟,是未來PC機硬碟的趨勢。 2001年,由Intel、APT、Dell、IBM、希捷、邁拓這幾大廠商組成的Serial ATA委員會正式確立了Serial ATA 1.0規範。 2002年,雖然串行ATA的相關設備還未正式上市,但Serial ATA委員會已搶先確立了Serial ATA 2.0規範。 Serial ATA採用串列連接方式,串列ATA匯流排使用嵌入式時脈訊號,具備了更強的糾錯能力,與以往相比其最大的差異在於能對傳輸指令(不只是資料)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了資料傳輸的可靠性。串行介面還具有結構簡單、支援熱插拔的優點。
串聯硬碟是一種完全不同於平行ATA的新硬碟介面類型,由於採用串列方式傳輸資料而知名。相對於並行ATA來說,就具有非常多的優勢。首先,Serial ATA以連續串列的方式傳送數據,一次只會傳送1位元資料。這樣能減少SATA介面的針腳數目,使連接電纜數目變少,效率也會更高。實際上,Serial ATA 僅用四支針腳就能完成所有的工作,分別用於連接電纜、連接接地線、發送數據和接收數據,同時這樣的架構還能降低系統能耗和減小系統複雜性。其次,Serial ATA的起點更高、發展潛力更大,Serial ATA 1.0定義的數據傳輸率可達150MB/s,比最快的平行ATA(即ATA/133)所能達到133MB/s的最高數據傳輸率還高,而在Serial ATA 2.0的資料傳輸率達到300MB/s,最終SATA將實現600MB/s的最高資料傳輸率。
五、快取
快取(Cache memory)是硬碟控制器上的記憶體晶片,具有極快的存取速度,它是硬碟內部儲存和外界介面之間的緩衝器。由於硬碟的內部資料傳輸速度和外界介面傳輸速度不同,快取在其中扮演一個緩衝的角色。快取的大小與速度是直接關係到硬碟的傳輸速度的重要因素,能夠大幅提升硬碟整體效能。當硬碟存取零碎資料時需要不斷地在硬碟與記憶體之間交換數據,有大緩存,則可以將那些零碎資料暫存在快取中,減小外系統的負荷,也提高了資料的傳輸速度。
更多常見問題的相關技術文章,請造訪常見問題教學##欄位進行學習!
以上是硬碟效能的技術指標的詳細內容。更多資訊請關注PHP中文網其他相關文章!

國產AI黑馬DeepSeek強勢崛起,震撼全球AI界!這家成立僅一年半的中國人工智能公司,憑藉其免費開源的大模型DeepSeek-V3和DeepSeek-R1,在性能上與OpenAI等國際巨頭比肩,甚至在成本控制方面實現了突破性進展,贏得了全球用戶的廣泛讚譽。 DeepSeek-R1現已全面上線,性能媲美OpenAIo1正式版!您可以在網頁端、APP以及API接口體驗其強大的功能。下載方式:支持iOS和安卓系統,用戶可通過應用商店下載;網頁版也已正式開放! DeepSeek網頁版官方入口:ht

DeepSeek:火爆AI遭遇服務器擁堵,如何應對? DeepSeek作為2025年開年爆款AI,免費開源且性能媲美OpenAIo1正式版,其受歡迎程度可見一斑。然而,高並發也帶來了服務器繁忙的問題。本文將分析原因並提供應對策略。 DeepSeek網頁版入口:https://www.deepseek.com/DeepSeek服務器繁忙的原因:高並發訪問:DeepSeek的免費和強大功能吸引了大量用戶同時使用,導致服務器負載過高。網絡攻擊:據悉,DeepSeek對美國金融界造成衝擊,

2025年開年,國產AI“深度求索”(deepseek)驚艷亮相!這款免費開源的AI模型,性能堪比OpenAI的o1正式版,並已在網頁端、APP和API全面上線,支持iOS、安卓和網頁版多端同步使用。深度求索deepseek官網及使用指南:官網地址:https://www.deepseek.com/網頁版使用步驟:點擊上方鏈接進入deepseek官網。點擊首頁的“開始對話”按鈕。首次使用需進行手機驗證碼登錄。登錄後即可進入對話界面。 deepseek功能強大,可進行代碼編寫、文件讀取、創

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SublimeText3 Linux新版
SublimeText3 Linux最新版

WebStorm Mac版
好用的JavaScript開發工具

禪工作室 13.0.1
強大的PHP整合開發環境

Atom編輯器mac版下載
最受歡迎的的開源編輯器