python中常見的資料庫有哪些呢?資料庫大致分為兩大類,第一類是包含關聯式資料庫,第二類是非關聯式資料庫,以下介紹這兩類資料庫的相關知識。
包含關聯式資料庫:sqlite,mysql,mssql
非關聯式資料庫:MongoDB,Redis
1. 連接Sqlite
import sqlite3 import traceback try: # 如果表不存在,就创建 with sqlite3.connect('test.db') as conn: print("Opened database successfully") # 删除表 conn.execute("DROP TABLE IF EXISTS COMPANY") # 创建表 sql = """ CREATE TABLE IF NOT EXISTS COMPANY (ID INTEGER PRIMARY KEY AUTOINCREMENT, NAME TEXT NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(50), SALARY REAL); """ conn.execute(sql) print("create table successfully") # 添加数据 conn.executemany("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY) VALUES (?, ?, ?, ? )", [('Paul', 32, 'California', 20000.00), ('Allen', 25, 'Texas', 15000.00), ('Teddy', 23, 'Norway', 20000.00), ('Mark', 25, 'Rich-Mond ', 65000.00), ('David', 27, 'Texas', 85000.00), ('Kim', 22, 'South-Hall', 45000.00), ('James', 24, 'Houston', 10000.00)]) # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ( 'Paul', 32, 'California', 20000.00 )") # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ('Allen', 25, 'Texas', 15000.00 )") # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ('Teddy', 23, 'Norway', 20000.00 )") # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ( 'Mark', 25, 'Rich-Mond ', 65000.00 )") # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ( 'David', 27, 'Texas', 85000.00 )"); # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ( 'Kim', 22, 'South-Hall', 45000.00 )") # # conn.execute("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY)\ # VALUES ( 'James', 24, 'Houston', 10000.00 )") # 提交,否则重新运行程序时,表中无数据 conn.commit() print("insert successfully") # 查询表 sql = """ select id,NAME,AGE,ADDRESS,SALARY FROM COMPANY """ result = conn.execute(sql) for row in result: print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("id", row[0])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row[1])) print("%-10s %s" % ("age", row[2])) print("%-10s %s" % ("address", row[3])) print("%-10s %.2f" % ("salary", row[4])) # or # print('{:10s} {:.2f}'.format("salary", row[4])) except sqlite3.Error as e: print("sqlite3 Error:", e) traceback.print_exc()
2.連接mysql
#相關推薦:《python影片教學》
#2.2 使用MySQLdb
2.1使用mysqldb函式庫中的_mysql
import MySQLdb from contextlib import closing import traceback try: # 获取一个数据库连接 with closing(MySQLdb.connect(host='localhost', user='root', passwd='root', db='test', port=3306,charset='utf8')) as conn: print("connect database successfully") with closing(conn.cursor()) as cur: # 删除表 cur.execute("DROP TABLE IF EXISTS COMPANY") # 创建表 sql = """ CREATE TABLE IF NOT EXISTS COMPANY (ID INTEGER PRIMARY KEY NOT NULL auto_increment, NAME TEXT NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(50), SALARY REAL); """ cur.execute(sql) print("create table successfully") # 添加数据 # 在一个conn.execute里面里面执行多个sql语句是非法的 cur.executemany("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY) VALUES ( %s, %s, %s, %s )", [('Paul', 32, 'California', 20000.00), ('Allen', 25, 'Texas', 15000.00), ('Teddy', 23, 'Norway', 20000.00), ('Mark', 25, 'Rich-Mond ', 65000.00), ('David', 27, 'Texas', 85000.00), ('Kim', 22, 'South-Hall', 45000.00), ('James', 24, 'Houston', 10000.00)]) # 提交,否则重新运行程序时,表中无数据 conn.commit() print("insert successfully") # 查询表 sql = """ select id,NAME,AGE,ADDRESS,SALARY FROM COMPANY """ cur.execute(sql) for row in cur.fetchall(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("id", row[0])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row[1])) print("%-10s %s" % ("age", row[2])) print("%-10s %s" % ("address", row[3])) print("%-10s %s" % ("salary", row[4])) except MySQLdb.Error as e: print("Mysql Error:", e) traceback.print_exc() # 打印错误栈信息
#2.2 使用MySQLdb
import MySQLdb from contextlib import closing import traceback try: # 获取一个数据库连接 with closing(MySQLdb.connect(host='localhost', user='root', passwd='root', db='test', port=3306,charset='utf8')) as conn: print("connect database successfully") with closing(conn.cursor()) as cur: # 删除表 cur.execute("DROP TABLE IF EXISTS COMPANY") # 创建表 sql = """ CREATE TABLE IF NOT EXISTS COMPANY (ID INTEGER PRIMARY KEY NOT NULL auto_increment, NAME TEXT NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(50), SALARY REAL); """ cur.execute(sql) print("create table successfully") # 添加数据 # 在一个conn.execute里面里面执行多个sql语句是非法的 cur.executemany("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY) VALUES ( %s, %s, %s, %s )", [('Paul', 32, 'California', 20000.00), ('Allen', 25, 'Texas', 15000.00), ('Teddy', 23, 'Norway', 20000.00), ('Mark', 25, 'Rich-Mond ', 65000.00), ('David', 27, 'Texas', 85000.00), ('Kim', 22, 'South-Hall', 45000.00), ('James', 24, 'Houston', 10000.00)]) # 提交,否则重新运行程序时,表中无数据 conn.commit() print("insert successfully") # 查询表 sql = """ select id,NAME,AGE,ADDRESS,SALARY FROM COMPANY """ cur.execute(sql) for row in cur.fetchall(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("id", row[0])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row[1])) print("%-10s %s" % ("age", row[2])) print("%-10s %s" % ("address", row[3])) print("%-10s %s" % ("salary", row[4])) except MySQLdb.Error as e: print("Mysql Error:", e) traceback.print_exc() # 打印错误栈信息
2.3使用pymysql
2.1和2.2節使用MySQLdb,不支援Python3.x
pymysql對Python2.x和Python3.x的支援都比較好
import pymysql from contextlib import closing import traceback try: # 获取一个数据库连接,with关键字 表示退出时,conn自动关闭 # with 嵌套上一层的with 要使用closing() with closing(pymysql.connect(host='localhost', user='root', passwd='root', db='test', port=3306, charset='utf8')) as conn: print("connect database successfully") # 获取游标,with关键字 表示退出时,cur自动关闭 with conn.cursor() as cur: # 删除表 cur.execute("DROP TABLE IF EXISTS COMPANY") # 创建表 sql = """ CREATE TABLE IF NOT EXISTS COMPANY (ID INTEGER PRIMARY KEY NOT NULL auto_increment, NAME TEXT NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(50), SALARY REAL); """ cur.execute(sql) print("create table successfully") # 添加数据 # 在一个conn.execute里面里面执行多个sql语句是非法的 cur.executemany("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY) VALUES ( %s, %s, %s, %s )", [('Paul', 32, 'California', 20000.00), ('Allen', 25, 'Texas', 15000.00), ('Teddy', 23, 'Norway', 20000.00), ('Mark', 25, 'Rich-Mond ', 65000.00), ('David', 27, 'Texas', 85000.00), ('Kim', 22, 'South-Hall', 45000.00), ('James', 24, 'Houston', 10000.00)]) # 提交,否则重新运行程序时,表中无数据 conn.commit() print("insert successfully") # 查询表 sql = """ select id,NAME,AGE,ADDRESS,SALARY FROM COMPANY """ cur.execute(sql) for row in cur.fetchall(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("id", row[0])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row[1])) print("%-10s %s" % ("age", row[2])) print("%-10s %s" % ("address", row[3])) print("%-10s %s" % ("salary", row[4])) except pymysql.Error as e: print("Mysql Error:", e) traceback.print_exc()
3.連接mssql##
import pymssql from contextlib import closing try: # 先要保证数据库中有test数据库 # 获取一个数据库连接,with关键字 表示退出时,conn自动关闭 # with 嵌套上一层的with 要使用closing() with closing(pymssql.connect(host='192.168.100.114', user='sa', password='sa12345', database='test', port=1433, charset='utf8')) as conn: print("connect database successfully") # 获取游标,with关键字 表示退出时,cur自动关闭 with conn.cursor() as cur: # 删除表 cur.execute( '''if exists (select 1 from sys.objects where name='COMPANY' and type='U') drop table COMPANY''') # 创建表 sql = """ CREATE TABLE COMPANY (ID INT IDENTITY(1,1) PRIMARY KEY NOT NULL , NAME TEXT NOT NULL, AGE INT NOT NULL, ADDRESS CHAR(50), SALARY REAL); """ cur.execute(sql) print("create table successfully") # 添加数据 # 在一个conn.execute里面里面执行多个sql语句是非法的 cur.executemany("INSERT INTO COMPANY (NAME,AGE,ADDRESS,SALARY) VALUES ( %s, %s, %s, %s )", [('Paul', 32, 'California', 20000.00), ('Allen', 25, 'Texas', 15000.00), ('Teddy', 23, 'Norway', 20000.00), ('Mark', 25, 'Rich-Mond', 65000.00), ('David', 27, 'Texas', 85000.00), ('Kim', 22, 'South-Hall', 45000.00), ('James', 24, 'Houston', 10000.00)]) # 提交,否则重新运行程序时,表中无数据 conn.commit() print("insert successfully") # 查询表 sql = """ select id,NAME,AGE,ADDRESS,SALARY FROM COMPANY """ cur.execute(sql) for row in cur.fetchall(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("id", row[0])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row[1])) print("%-10s %s" % ("age", row[2])) print("%-10s %s" % ("address", row[3])) print("%-10s %s" % ("salary", row[4])) except pymssql.Error as e: print("mssql Error:", e) # traceback.print_exc()
4.連接MongoDB
import pymongo from pymongo.mongo_client import MongoClient import pymongo.errors import traceback try: # 连接到 mongodb 服务 mongoClient = MongoClient('localhost', 27017) # 连接到数据库 mongoDatabase = mongoClient.test print("connect database successfully") # 获取集合 mongoCollection = mongoDatabase.COMPANY # 移除所有数据 mongoCollection.remove() # 添加数据 mongoCollection.insert_many([{"Name": "Paul", "Age": "32", "Address": "California", "Salary": "20000.00"}, {"Name": "Allen", "Age": "25", "Address": "Texas", "Salary": "15000.00"}, {"Name": "Teddy", "Age": "23", "Address": "Norway", "Salary": "20000.00"}, {"Name": "Mark", "Age": "25", "Address": "Rich-Mond", "Salary": "65000.00"}, {"Name": "David", "Age": "27", "Address": "Texas", "Salary": "85000.00"}, {"Name": "Kim", "Age": "22", "Address": "South-Hall", "Salary": "45000.00"}, {"Name": "James", "Age": "24", "Address": "Houston", "Salary": "10000.00"}, ]) #获取集合中的值 for row in mongoCollection.find(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("_id", row['_id'])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row['Name'])) print("%-10s %s" % ("age", row['Age'])) print("%-10s %s" % ("address", row['Address'])) print("%-10s %s" % ("salary", row['Salary'])) print('\n\n\n') # 使id自增 mongoCollection.remove() # 创建计数表 mongoDatabase.counters.save({"_id": "people_id", "sequence_value": 0}) # 创建存储过程 mongoDatabase.system_js.getSequenceValue = '''function getSequenceValue(sequenceName){ var sequenceDocument = db.counters.findAndModify({ query: {_id: sequenceName}, update: {$inc:{sequence_value: 1}}, new:true }); return sequenceDocument.sequence_value; }''' mongoCollection.insert_many( [{"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "Paul", "Age": "32", "Address": "California", "Salary": "20000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "Allen", "Age": "25", "Address": "Texas", "Salary": "15000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "Teddy", "Age": "23", "Address": "Norway", "Salary": "20000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "Mark", "Age": "25", "Address": "Rich-Mond", "Salary": "65000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "David", "Age": "27", "Address": "Texas", "Salary": "85000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "Kim", "Age": "22", "Address": "South-Hall", "Salary": "45000.00"}, {"_id": mongoDatabase.eval("getSequenceValue('people_id')"), "Name": "James", "Age": "24", "Address": "Houston", "Salary": "10000.00"}, ]) for row in mongoCollection.find(): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("_id", int(row['_id']))) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row['Name'])) print("%-10s %s" % ("age", row['Age'])) print("%-10s %s" % ("address", row['Address'])) print("%-10s %s" % ("salary", row['Salary'])) except pymongo.errors.PyMongoError as e: print("mongo Error:", e) traceback.print_exc()
5.連接Redis
5.1使用redisimport redis r = redis.Redis(host='localhost', port=6379, db=0, password="12345") print("connect", r.ping()) # 看信息 info = r.info() # or 查看部分信息 # info = r.info("Server") # 输出信息 items = info.items() for i, (key, value) in enumerate(items): print("item %s----%s:%s" % (i, key, value)) # 删除键和对应的值 r.delete("company") # 可以一次性push一条或多条数据 r.rpush("company", {"id": 1, "Name": "Paul", "Age": "32", "Address": "California", "Salary": "20000.00"}, {"id": 2, "Name": "Allen", "Age": "25", "Address": "Texas", "Salary": "15000.00"}, {"id": 3, "Name": "Teddy", "Age": "23", "Address": "Norway", "Salary": "20000.00"}) r.rpush("company", {"id": 4, "Name": "Mark", "Age": "25", "Address": "Rich-Mond", "Salary": "65000.00"}) r.rpush("company", {"id": 5, "Name": "David", "Age": "27", "Address": "Texas", "Salary": "85000.00"}) r.rpush("company", {"id": 6, "Name": "Kim", "Age": "22", "Address": "South-Hall", "Salary": "45000.00"}) r.rpush("company", {"id": 7, "Name": "James", "Age": "24", "Address": "Houston", "Salary": "10000.00"}) # eval用来将dict格式的字符串转换成dict for row in map(lambda x: eval(x), r.lrange("company", 0, r.llen("company"))): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("_id", row['id'])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row['Name'])) print("%-10s %s" % ("age", row['Age'])) print("%-10s %s" % ("address", row['Address'])) print("%-10s %s" % ("salary", row['Salary'])) # 关闭当前连接 # r.shutdown() #这个是关闭redis服务端5.2使用pyredis
import pyredis r = pyredis.Client(host='localhost', port=6379, database=0, password="12345") print("connect", r.ping().decode("utf-8")) # 看信息 # info = r.execute("info").decode() # or 查看部分信息 info = r.execute("info", "Server").decode() # 输出信息 print(info) # 删除键和对应的值 r.delete("company") # 可以一次性push一条或多条数据 r.rpush("company", '''{"id": 1, "Name": "Paul", "Age": "32", "Address": "California", "Salary": "20000.00"}''', '''{"id": 2, "Name": "Allen", "Age": "25", "Address": "Texas", "Salary": "15000.00"}''', '''{"id": 3, "Name": "Teddy", "Age": "23", "Address": "Norway", "Salary": "20000.00"}''') r.rpush("company", '''{"id": 4, "Name": "Mark", "Age": "25", "Address": "Rich-Mond", "Salary": "65000.00"}''') r.rpush("company", '''{"id": 5, "Name": "David", "Age": "27", "Address": "Texas", "Salary": "85000.00"}''') r.rpush("company", '''{"id": 6, "Name": "Kim", "Age": "22", "Address": "South-Hall", "Salary": "45000.00"}''') r.rpush("company", '''{"id": 7, "Name": "James", "Age": "24", "Address": "Houston", "Salary": "10000.00"}''') # eval用来将dict格式的字符串转换成dict for row in map(lambda x: eval(x), r.lrange("company", 0, r.llen("company"))): print("-" * 50) # 输出50个-,作为分界线 print("%-10s %s" % ("_id", row['id'])) # 字段名固定10位宽度,并且左对齐 print("%-10s %s" % ("name", row['Name'])) print("%-10s %s" % ("age", row['Age'])) print("%-10s %s" % ("address", row['Address'])) print("%-10s %s" % ("salary", row['Salary'])) # 关闭当前连接 r.close()
以上是python中常見資料庫有哪些的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本文討論了版本3.10中介紹的Python的新“匹配”語句,該語句與其他語言相同。它增強了代碼的可讀性,並為傳統的if-elif-el提供了性能優勢

Python中的功能註釋將元數據添加到函數中,以進行類型檢查,文檔和IDE支持。它們增強了代碼的可讀性,維護,並且在API開發,數據科學和圖書館創建中至關重要。

本文討論了Python中的單位測試,其好處以及如何有效編寫它們。它突出顯示了諸如UNITSEST和PYTEST之類的工具進行測試。

文章討論了Python的\ _ \ _ Init \ _ \ _()方法和Self在初始化對象屬性中的作用。還涵蓋了其他類方法和繼承對\ _ \ _ Init \ _ \ _()的影響。

本文討論了python中@classmethod,@staticmethod和實例方法之間的差異,詳細介紹了它們的屬性,用例和好處。它說明瞭如何根據所需功能選擇正確的方法類型和DA

Inpython,YouAppendElementStoAlistusingTheAppend()方法。 1)useappend()forsingleelements:my_list.append(4).2)useextend()orextend()或= formultiplelements:my_list.extend.extend(emote_list)ormy_list = [4,5,6] .3)useInsert()forspefificpositions:my_list.insert(1,5).beaware


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

記事本++7.3.1
好用且免費的程式碼編輯器

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中