首頁  >  文章  >  後端開發  >  Python中實現機器學習功能的四種方法介紹

Python中實現機器學習功能的四種方法介紹

不言
不言轉載
2019-04-13 11:41:103337瀏覽

這篇文章帶給大家的內容是關於Python中實現機器學習功能的四種方法介紹,有一定的參考價值,有需要的朋友可以參考一下,希望對你有所幫助。

在本文中,我們將介紹從資料集中選擇要素的不同方法; 並使用Scikit-learn(sklearn)函式庫討論特徵選擇演算法的類型及其在Python中的實作:

  1. 單變量特徵選擇
  2. 遞歸特徵消除(RFE)
  3. 主成分分析(PCA)
  4. 特徵選擇(feature importance)

#單變數特徵選擇

統計檢定可用來選擇與輸出變數具有最強關係的那些特徵。

scikit-learn函式庫提供SelectKBest類,可以與一組不同的統計檢定一起使用,以選擇特定數量的功能。

以下範例使用chi平方(chi ^ 2)統計檢定非負特徵來選擇Pima Indians糖尿病資料集中的四個最佳特徵:

#Feature Extraction with Univariate Statistical Tests (Chi-squared for classification)

#Import the required packages

#Import pandas to read csv import pandas

#Import numpy for array related operations import numpy

#Import sklearn's feature selection algorithm

from sklearn.feature_selection import SelectKBest

#Import chi2 for performing chi square test from sklearn.feature_selection import chi2

#URL for loading the dataset

url ="https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians diabetes/pima-indians-diabetes.data"

#Define the attribute names

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

#Create pandas data frame by loading the data from URL

dataframe = pandas.read_csv(url, names=names)

#Create array from data values

array = dataframe.values

#Split the data into input and target

X = array[:,0:8]

Y = array[:,8]

#We will select the features using chi square

test = SelectKBest(score_func=chi2, k=4)

#Fit the function for ranking the features by score

fit = test.fit(X, Y)

#Summarize scores numpy.set_printoptions(precision=3) print(fit.scores_)

#Apply the transformation on to dataset

features = fit.transform(X)

#Summarize selected features print(features[0:5,:])

每個屬性的分數和所選的四個屬性(分數最高的分數):plas,test,mass和age。

每個函數的分數:

[111.52   1411.887 17.605 53.108  2175.565   127.669 5.393

181.304]

特色:

[[148. 0. 33.6 50. ]

[85. 0. 26.6 31. ]

[183. 0. 23.3 32. ]

[89. 94. 28.1 21. ]

[137. 168. 43.1 33. ]]

#遞歸特徵消除(RFE)

RFE透過遞歸刪除屬性並在剩餘的屬性上建立模型來工作。它使用模型精確度來識別哪些屬性(和屬性組合)對預測目標屬性的貢獻最大。以下範例使用RFE和邏輯迴歸演算法來選擇前三個特徵。演算法的選擇並不重要,只要它技巧性和一致性:

#Import the required packages

#Import pandas to read csv import pandas

#Import numpy for array related operations import numpy

#Import sklearn's feature selection algorithm from sklearn.feature_selection import RFE

#Import LogisticRegression for performing chi square test from sklearn.linear_model import LogisticRegression

#URL for loading the dataset

url =

"https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-dia betes/pima-indians-diabetes.data"

#Define the attribute names

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

#Create pandas data frame by loading the data from URL

dataframe = pandas.read_csv(url, names=names)

#Create array from data values

array = dataframe.values

#Split the data into input and target

X = array[:,0:8]

Y = array[:,8]

#Feature extraction

model = LogisticRegression() rfe = RFE(model, 3)

fit = rfe.fit(X, Y)

print("Num Features: %d"% fit.n_features_) print("Selected Features: %s"% fit.support_) print("Feature Ranking: %s"% fit.ranking_)

執行後,我們將獲得:

Num Features: 3

Selected Features: [ True False False False False   True  True False]

Feature Ranking: [1 2 3 5 6 1 1 4]

您可以看到RFE選擇了前三個功能,例如preg ,mass和pedi。這些在support_數組中標記為True,並在ranking_數組中標記為選項1。

主成分分析(PCA)

PCA使用線性代數將資料集轉換為壓縮形式。通常,它被認為是數據簡化技術。 PCA的一個屬性是您可以選擇轉換結果中的維度或主成分數。

在以下範例中,我們使用PCA並選擇三個主要元件:

#Import the required packages

#Import pandas to read csv import pandas

#Import numpy for array related operations import numpy

#Import sklearn's PCA algorithm

from sklearn.decomposition import PCA

#URL for loading the dataset

url =

"https://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians diabetes/pima-indians-diabetes.data"

#Define the attribute names

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = pandas.read_csv(url, names=names)

#Create array from data values

array = dataframe.values

#Split the data into input and target

X = array[:,0:8]

Y = array[:,8]

#Feature extraction

pca = PCA(n_components=3) fit = pca.fit(X)

#Summarize components

print("Explained Variance: %s") % fit.explained_variance_ratio_

print(fit.components_)

您可以看到轉換後的資料集(三個主要元件)與來源資料幾乎沒有相似之處:

Explained Variance: [ 0.88854663   0.06159078  0.02579012]

[[ -2.02176587e-03    9.78115765e-02 1.60930503e-02    6.07566861e-02

9.93110844e-01          1.40108085e-02 5.37167919e-04   -3.56474430e-03]

[ -2.26488861e-02   -9.72210040e-01              -1.41909330e-01  5.78614699e-02 9.46266913e-02   -4.69729766e-02               -8.16804621e-04  -1.40168181e-01

[ -2.24649003e-02 1.43428710e-01                 -9.22467192e-01  -3.07013055e-01 2.09773019e-02   -1.32444542e-01                -6.39983017e-04  -1.25454310e-01]]

特徵選擇(feature importance)

特徵重要性是用來使用訓練有監督的分類器來選擇特徵的技術。當我們訓練分類器(例如決策樹)時,我們會評估每個屬性以建立分裂; 我們可以將此測量值用作特徵選擇器。讓我們詳細了解它。

隨機森林是最受歡迎的 機器學習方法之一,因為它們具有相對較好的準確性,穩健性和易用性。它們還提供了兩種直接的特徵選擇方法 - 平均降低雜質平均降低精度

隨機森林由許多決策樹組成。決策樹中的每個節點都是單一要素上的條件,旨在將資料集拆分為兩個,以便類似的回應值最終出現在同一個集合中。選擇(局部)最佳條件的量測稱為雜質。對於分類,它通常是基尼係數

雜質或資訊增益/熵,對於迴歸樹,它是變異數。因此,當訓練樹時,可以透過每個特徵減少樹中的加權雜質的程度來計算它。對於森林,可以對每個特徵的雜質減少進行平均,並且根據該度量對特徵進行排序。

讓我們看看如何使用隨機森林分類器進行特徵選擇,並評估特徵選擇前後分類器的準確性。我們將使用Otto資料集。

此資料集描述了超過61,000種產品的93個模糊細節,這些產品分為10個產品類別(例如,時裝,電子產品等) 。輸入屬性是某種不同事件的計數。

目標是將新產品的預測作為10個類別中每個類別的機率數組,並使用多類別對數損失(也稱為交叉熵)來評估模型。

我們將從導入所有庫開始:

#Import the supporting libraries

#Import pandas to load the dataset from csv file

from pandas import read_csv

#Import numpy for array based operations and calculations

import numpy as np

#Import Random Forest classifier class from sklearn

from sklearn.ensemble import RandomForestClassifier

#Import feature selector class select model of sklearn

        from sklearn.feature_selection

        import SelectFromModel

         np.random.seed(1)

讓我們定義一種方法將資料集拆分為訓練和測試資料; 我們將在訓練部分訓練我們的資料集,測試部分將用於評估訓練模型:

#Function to create Train and Test set from the original dataset def getTrainTestData(dataset,split):

np.random.seed(0) training = [] testing = []

np.random.shuffle(dataset) shape = np.shape(dataset)

trainlength = np.uint16(np.floor(split*shape[0]))

for i in range(trainlength): training.append(dataset[i])

for i in range(trainlength,shape[0]): testing.append(dataset[i])

training = np.array(training) testing = np.array(testing)

return training,testing

我們還需要添加一個函數來評估模型的準確性; 它將預測和實際輸出作為輸入來計算百分比準確度:

#Function to evaluate model performance

def getAccuracy(pre,ytest): count = 0

for i in range(len(ytest)):

if ytest[i]==pre[i]: count+=1

acc = float(count)/len(ytest)

return acc

這是載入資料集的時間。我們將載入train.csv檔案; 此檔案包含超過61,000個訓練實例。我們將在我們的範例中使用50000個實例,其中我們將使用35,000個實例來訓練分類器,並使用15,000個實例來測試分類器的效能:

#Load dataset as pandas data frame

data = read_csv('train.csv')

#Extract attribute names from the data frame

feat = data.keys()

feat_labels = feat.get_values()

#Extract data values from the data frame

dataset = data.values

#Shuffle the dataset

np.random.shuffle(dataset)

#We will select 50000 instances to train the classifier

inst = 50000

#Extract 50000 instances from the dataset

dataset = dataset[0:inst,:]

#Create Training and Testing data for performance evaluation

train,test = getTrainTestData(dataset, 0.7)

#Split data into input and output variable with selected features

Xtrain = train[:,0:94] ytrain = train[:,94] shape = np.shape(Xtrain)

print("Shape of the dataset ",shape)

#Print the size of Data in MBs

print("Size of Data set before feature selection: %.2f MB"%(Xtrain.nbytes/1e6))

我們在這裡注意到資料大小; 因為我們的資料集包含大約35000個具有94個屬性的訓練實例; 我們的資料集的大小非常大。讓我們來看看:

Shape of the dataset (35000, 94)

Size of Data set before feature selection: 26.32 MB

如您所見,我們的資料集中有35000行和94列,超過26 MB資料。

在下一個程式碼區塊中,我們將配置隨機林分類器; 我們將使用250棵樹,最大深度為30,隨機要素的數量為7.其他超參數將是sklearn的預設值:

#Lets select the test data for model evaluation purpose

Xtest = test[:,0:94] ytest = test[:,94]

#Create a random forest classifier with the following Parameters

trees            = 250

max_feat     = 7

max_depth = 30

min_sample = 2

clf = RandomForestClassifier(n_estimators=trees,

max_features=max_feat,

max_depth=max_depth,

min_samples_split= min_sample, random_state=0,

n_jobs=-1)

#Train the classifier and calculate the training time

import time

start = time.time() clf.fit(Xtrain, ytrain) end = time.time()

#Lets Note down the model training time

print("Execution time for building the Tree is: %f"%(float(end)- float(start)))

pre = clf.predict(Xtest)

Let's see how much time is required to train the model on the training dataset:

Execution time for building the Tree is: 2.913641

#Evaluate the model performance for the test data

acc = getAccuracy(pre, ytest)

print("Accuracy of model before feature selection is %.2f"%(100*acc))

我们模型的准确性是:

特征选择前的模型精度为98.82

正如您所看到的,我们正在获得非常好的准确性,因为我们将近99%的测试数据分类到正确的类别中。这意味着我们正在对15,000个正确类中的14,823个实例进行分类。

那么,现在我的问题是:我们是否应该进一步改进?好吧,为什么不呢?如果可以的话,我们肯定会寻求更多的改进; 在这里,我们将使用功能重要性来选择功能。如您所知,在树木构建过程中,我们使用杂质测量来选择节点。选择具有最低杂质的属性值作为树中的节点。我们可以使用类似的标准进行特征选择。我们可以更加重视杂质较少的功能,这可以使用sklearn库的feature_importances_函数来完成。让我们找出每个功能的重要性:

#Once我们培养的模型中,我们的排名将所有功能的功能拉链(feat_labels,clf.feature_importances_):

print(feature)

('id', 0.33346650420175183)

('feat_1', 0.0036186958628801214)

('feat_2', 0.0037243050888530957)

('feat_3', 0.011579217472062748)

('feat_4', 0.010297382675187445)

('feat_5', 0.0010359139416194116)

('feat_6', 0.00038171336038056165)

('feat_7', 0.0024867672489765021)

('feat_8', 0.0096689721610546085)

('feat_9', 0.007906150362995093)

('feat_10', 0.0022342480802130366)

正如您在此处所看到的,每个要素都基于其对最终预测的贡献而具有不同的重要性。

我们将使用这些重要性分数来排列我们的功能; 在下面的部分中,我们将选择功能重要性大于0.01的模型训练功能:

#Select features which have higher contribution in the final prediction

sfm = SelectFromModel(clf, threshold=0.01) sfm.fit(Xtrain,ytrain)

在这里,我们将根据所选的特征属性转换输入数据集。在下一个代码块中,我们将转换数据集。然后,我们将检查新数据集的大小和形状:

#Transform input dataset

Xtrain_1 = sfm.transform(Xtrain) Xtest_1      = sfm.transform(Xtest)

#Let's see the size and shape of new dataset print("Size of Data set before feature selection: %.2f MB"%(Xtrain_1.nbytes/1e6))

shape = np.shape(Xtrain_1)

print("Shape of the dataset ",shape)

Size of Data set before feature selection: 5.60 MB Shape of the dataset (35000, 20)

你看到数据集的形状了吗?在功能选择过程之后,我们只剩下20个功能,这将数据库的大小从26 MB减少到5.60 MB。这比原始数据集减少了约80%

在下一个代码块中,我们将训练一个新的随机森林分类器,它具有与之前相同的超参数,并在测试数据集上进行测试。让我们看看修改训练集后得到的准确度:

#Model training time

start = time.time() clf.fit(Xtrain_1, ytrain) end = time.time()

print("Execution time for building the Tree is: %f"%(float(end)- float(start)))

#Let's evaluate the model on test data

pre = clf.predict(Xtest_1) count = 0

acc2 = getAccuracy(pre, ytest)

print("Accuracy after feature selection %.2f"%(100*acc2))

Execution time for building the Tree is: 1.711518 Accuracy after feature selection 99.97

你能看到!! 我们使用修改后的数据集获得了99.97%的准确率,这意味着我们在正确的类中对14,996个实例进行了分类,而之前我们只正确地对14,823个实例进行了分类。

这是我们在功能选择过程中取得的巨大进步; 我们可以总结下表中的所有结果:

评估标准 在选择特征之前 选择功能后
功能数量 94 20
数据集的大小 26.32 MB 5.60 MB
训练时间 2.91秒 1.71秒
准确性 98.82% 99.97%

上表显示了特征选择的实际优点。您可以看到我们显着减少了要素数量,从而降低了数据集的模型复杂性和维度。尺寸减小后我们的训练时间缩短,最后,我们克服了过度拟合问题,获得了比以前更高的精度。

以上是Python中實現機器學習功能的四種方法介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:segmentfault.com。如有侵權,請聯絡admin@php.cn刪除