搜尋
首頁後端開發Python教學Python中Sympy代數符號運算的介紹

Python中Sympy代數符號運算的介紹

Mar 29, 2019 am 11:04 AM
matlabpython數學

本篇文章帶給大家的內容是關於Python中Sympy代數符號運算的介紹,有一定的參考價值,有需要的朋友可以參考一下,希望對你有幫助。

在我們初、高中和大學近10年的學習時間裡,數學一直佔據著非常大的分量,但是回憶過去可以發現,我們把大量的時間都花在反覆解題、不斷運算上,計算方法、運算技巧、筆算能力以及數學公式的記憶彷彿成了我們學習數學的全部。這些記憶和技巧沒幾年就忘記了,但很多人甚至還記得那份陰影;筆算與解題在AI、圖形影像、資料分析等上被軟體取代。那我們學生時代的數學還剩下什麼呢?

計算器與數學

說起數學計算器,我們常見的是加減乘除四則運算,有了它,我們就可以擺脫筆算和心算的痛苦。四位數以上的加減乘除在數學的原理上其實並不難,但是如果不借助於計算器,光依賴我們的運算能力(筆算和心算),不僅運算的準確度大打折扣,而且還會讓我們對數學的運用停留在一個非常淺的層次。

儘管四則運算如此簡單,但是多位數運算的心算卻在我們生活中被歸類為天才般的能力。但是數學的應用應該要生活化、普及化,而不是只屬於天才的專利,計算器改變了這一切,這就是計算器的魅力。
計算器還可以做科學運算,例如乘方、開方、指數、對數、三角函數等,儘管這些知識在我們初中時代,透過紙筆也是能運算起來的,但是也僅限於一些極其常用和簡單的運算,一旦複雜起來,透過紙筆來運算就是一項複雜的工程了。所以說,計算器可以讓我們離數學的應用更近

但是我們學生時代所學的數學可遠不止這些,尤其是高等數學(微積分)、線性代數、機率統計等數學知識應用非常廣泛(我也是後來才知道),但是由於他們的運算非常複雜,我們即便掌握了這些知識,想要應用它又談何容易,那有沒有微積分、線性代數、機率統計等的計算器呢?

答案是有的,它們就是電腦代數系統Computer Algebra System,簡稱CAS,Python的Sympy函式庫也支援有數學符號的微積分、線性代數等運算。

有了計算器,我們才能真正脫離數學複雜的解題本身,把精力花在對數學原理和應用的學習上,而這才是(在工作方面)數學學習的意義。

電腦代數系統

Sympy可以實現數學符號的運算,用它來進行數學表達式的符號推導和驗算,處理帶有數學符號的導數、極限、微積分、方程群組、矩陣等,就像科學計算器一樣簡單,類似電腦代數系統CAS,雖然CAS通常是視覺化軟體,但維基百科上也把Sympy歸為CAS。

幾大知名的數學軟體例如MathematicaMaximaMatlab(需Symbolic Math Toolbox)Maple等都可以做符號運算,在上篇文章中我們已經拿Python和R、Matlab對比了,顯然Python在指定場景下確實優勢非常明顯,於是我又調查了一下Sympy與Mathematica的比較,在輸入公式以及生成圖表方面,Sympy確實不行(這點Python有其他函式庫來彌補),Mathematica能夠做什麼,Sympy基本上也能做什麼。

所以說Python在專業數學(數學、數據科學等)領域,由於其擁有非常多而且強大的第三方庫,構成了一個極其完善的生態鏈,即使是面對世界上最為強勢最為硬派的軟體也是絲毫不虛的。

本專欄用Python學數學的下一期也會介紹一些非常實用的數學工具和數學教材資源,讓數學的學習更簡單更生動。

Sympy的符號運算

如果之前是學數學相關專業了解電腦代數系統CAS,就會對數學符號的運算比較熟悉,而如果之前是程式設計師,可能會有點不太明白,下面我們就來了解一下。

Sympy與Math函數的差異

我們先來看看Sympy函式庫和Python內建的Math函數對數值計算的處理有什麼不同。為了讓程式碼可執行,下面的程式碼都是基於Python3的完整程式碼。

import sympy,math
print(math.sqrt(8))
print(sympy.sqrt(8))

執行之後,結果顯示為:

2.8284271247461903
2*sqrt(2)

math模組是直接解出一個浮點值,而Sympy則是用數學符號表示出結果,結合LaTex的語法就可以得出我們在課本裡最熟悉的:$2\sqrt{2}$。

數學符號與表達式

我们要对数学方程组、微积分等进行运算时,就会遇到变量比如x,y,z,f等的问题,也会遇到求导、积分等代数符号表达式,而Sympy就可以保留变量,计算有代数符号的表达式的。

from sympy import *
x = Symbol('x')
y = Symbol('y')
k, m, n = symbols('k m n')
print(3*x+y**3)

输出的结果为:3*x + y**3,转化为LaTex表示法之后结果为$3x+y^3$,输出的结果就带有x和y变量。Symbol()函数定义单个数学符号;symbols()函数定义多个数学符号。

折叠与展开表达式

factor()函数可以折叠表达式,而expand()函数可以展开表达式,比如表达式:$x^4+xy+8x$,折叠之后应该是$x(x^3+y+8)$。我们来看具体的代码:

from sympy import *
x,y = symbols('x y')
expr=x**4+x*y+8*x
f_expr=factor(expr)
e_expr=expand(f_expr)
print(f_expr)
print(e_expr)

表达式的折叠与展开,对应的数学知识就是因式分解,相关的数学知识在人教版初二的教程里。用Python学习数学专栏的目的就是要Python与初高中、大学的数学学习结合起来,让数学变得更加简单生动。

表达式化简

simplify()函数可以对表达式进行化简。有一些表达式看起来会比较复杂,就拿人教版初二上的一道多项式的乘法为例,简化$(2x)^3(-5xy^2)$。

from sympy import *
x,y = symbols('x y')
expr=(2*x)**3*(-5*x*y**2)
s_expr=simplify(expr)
print(s_expr)

求解方程组

在人教版的数学教材里,我们初一上会接触一元一次方程组,初一下就会接触二元一次方程、三元一次方程组,在初三上会接触到一元二次方程,使用Sympy的solve()函数就能轻松解题。

解一元一次方程

我们来求解这个一元一次方程组。(题目来源于人教版七年级数学上)
$$6 \times x + 6 \times(x-2000)=150000$$

from sympy import *
x = Symbol('x')
print(solve(6*x + 6*(x-2000)-150000,x))

我们需要掌握Python的代码符号和数学符号之间的对应关系,解一元一次方程就非常简单。

解二元一次方程组

我们来看如何求解二元一次方程组。(题目来自人教版七年级数学下)

$$ \begin{cases} x+ y =10,\\ 2 \times x+ y=16   \end{cases} $$

from sympy import *
x,y = symbols('x y')
print(solve([x + y-10,2*x+y-16],[x,y]))

很快就可以得出{x: 6, y: 4},也就是
$$x=6,y=4$$。

解三元一次方程组

我们来看如何解三元一次方程组。(题目来自人教版七年级数学下)

$$ \begin{cases} x+y+z=12,\\ x+2y+5z=22,\\ x=4y.   \end{cases} $$

执行之后,很快可以得出结果{x: 8, y: 2, z: 2},也就是
$$x=8,y=2,z=2$$

解一元二次方程组

比如我们来求解人教版九年级一元二次方程组比较经典的一个题目,$ax^2+bx+c=0$.

from sympy import *
x,y = symbols('x y')
a,b,c=symbols('a b c')
expr=a*x**2 + b*x + c
s_expr=solve( expr, x)
print(s_expr)

执行之后得出的结果为[(-b + sqrt(-4*a*c + b**2))/(2*a), -(b + sqrt(-4*a*c + b**2))/(2*a)],我们知道根与系数的关系二次方程会有两个解,这里的格式就是一个列表。转为我们常见的数学公式即为:
$$\frac{-b+\sqrt{-4ac+b^2}}{2a} 、-\frac{b+\sqrt{-4ac+b^2}}{2a}$$

微积分Calculus

微积分是大学高等数学里非常重要的学习内容,比如求极限、导数、微分、不定积分、定积分等都是可以使用Sympy来运算的。
求极限
Sympy是使用limit(表达式,变量,极限值)函数来求极限的,比如我们要求$\lim \limits_{x \to 0} \frac{sinx(x)}{x}$的值。

from sympy import *
x, y, z = symbols('x y z')
expr = sin(x)/x
l_expr=limit(expr, x, 0)
print(l_expr)

执行后即可得到结果为1。

求导

可以使用diff(表达式,变量,求导的次数)函数对表达式求导,比如我们要对$sin(x)e^x$进行$x$求导,以及求导两次,代码如下:

from sympy import *
x,y = symbols('x y')
expr=sin(x)*exp(x)
diff_expr=diff(expr, x)
diff_expr2=diff(expr,x,2)
print(diff_expr)
print(diff_expr2)

求导一次的结果就是exp(x)*sin(x) + exp(x)*cos(x),也就是$e^xsin(x)+e^xcos(x)$;求导两次的结果是2*exp(x)*cos(x),也就是
$$2e^xcosx$$

求不定积分

Sympy是使用integrate(表达式,变量)来求不定积分的,比如我们要求$\int(e^x\sin{(x)} + e^x\cos{(x)})\,dx$

from sympy import *
x,y = symbols('x y')
expr=exp(x)*sin(x) + exp(x)*cos(x)
i_expr=integrate(expr,x)
print(i_expr)

执行之后的结果为:exp(x)*sin(x) 转化之后为:
$$e^xsin(x)$$

求定积分

Sympy同样是使用integrate()函数来做定积分的求解,只是语法不同:integrate(表达式,(变量,下区间,上区间)),我们来看如果求解
$\int_{-\infty}^\infty \sin{(x^2)}\,dx$

from sympy import *
x,y = symbols('x y')
expr=sin(x**2)
i_expr=integrate(expr, (x, -oo, oo))
print(i_expr)

执行之后的结果为sqrt(2)*sqrt(pi)/2,也就是
$$\frac{\sqrt{2}\sqrt{\pi}}{2}$$

Sympy能够做的也远不止这些,初高中、大学的数学运算题在Sympy极为丰富的功能里不过只是开胃入门小菜而已。

本篇文章到这里就已经全部结束了,更多其他精彩内容可以关注PHP中文网的python视频教程栏目!

以上是Python中Sympy代數符號運算的介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:segmentfault。如有侵權,請聯絡admin@php.cn刪除
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強大的PHP整合開發環境

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),