搜尋
首頁後端開發php教程Fpm啟動機制及流程的詳細分析(附程式碼)

這篇文章帶給大家的內容是關於Fpm啟動機制及流程的詳細分析(附程式碼),有一定的參考價值,有需要的朋友可以參考一下,希望對你有幫助。

FPM(FastCGI Process Manager)是PHP FastCGI運作模式的一個行程管理器,從它的定義可以看出,FPM的核心功能是進程管理,那麼它用來管理什麼進程呢?這個問題就需要從FastCGI說起了。

FastCGI是Web伺服器(如:Nginx、Apache)和處理程序之間的一種通訊協議,它是與Http類似的一種應用層通訊協議,注意:它只是一種協定!

前面曾經一再強調,PHP只是一個腳本解析器,你可以把它理解為一個普通的函數,輸入是PHP腳本。輸出是執行結果,假如我們想用PHP代替shell,在命令列中執行一個文件,那麼就可以寫一個程式來嵌入PHP解析器,這就是cli模式,這種模式下PHP就是普通的一個命令工具。接著我們又想:能不能讓PHP處理http請求呢?這時就牽涉到了網路處理,PHP需要接收請求、解析協議,然後處理完成回傳請求。在網路應用場景下,PHP並沒有像Golang那樣實現http網路庫,而是實現了FastCGI協議,然後與web伺服器配合實現了http的處理,web伺服器來處理http請求,然後將解析的結果再通過FastCGI協定轉發給處理程序,處理程序處理完成後將結果傳回web伺服器,web伺服器再傳回用戶,如下圖所示。

PHP實現了FastCGI協定的解析,但是並沒有具體實現網絡處理,一般的處理模型:多進程、多線程,多進程模型通常是主進程只負責管理子進程,而基本的網絡事件由各個子程序處理,nginx、fpm就是這種模式;另一種多執行緒模型與多行程類似,只是它是執行緒粒度,通常會由主執行緒監聽、接收請求,然後交由子執行緒處理,memcached就是這種模式,有的也是採用多進程那種模式:主執行緒只負責管理子執行緒不處理網路事件,各個子執行緒監聽、接收、處理請求,memcached使用udp協定時採用的是這種模式。

1.3.2 基本實作
概括來說,fpm的實作就是創建一個master進程,在master進程中創建並監聽socket,然後fork出多個子進程,這些子進程各自accept請求,子進程的處理非常簡單,它在啟動後阻塞在accept上,有請求到達後開始讀取請求數據,讀取完成後開始處理然後再返回,在這期間是不會接收其它請求的,也就是說fpm的子程序同時只能回應一個請求,只有把這個請求處理完成後才會accept下一個請求,這一點與nginx的事件驅動有很大的區別,nginx的子程序通過epoll管理套接字,如果一個請求資料尚未發送完成則會處理下一個請求,即一個進程會同時連接多個請求,它是非阻塞的模型,只處理活躍的套接字。

fpm的master進程與worker進程之間不會直接進行通信,master透過共享記憶體獲取worker進程的信息,例如worker進程當前狀態、已處理請求數等,當master進程要殺掉一個worker進程時則透過發送訊號的方式通知worker進程。

fpm可以同時監聽多個端口,每個端口對應一個worker pool,而每個pool下對應多個worker進程,類似nginx中server概念。

在php-fpm.conf中透過[pool name]宣告一個worker pool:

[web1]
listen = 127.0.0.1:9000
...

[web2]
listen = 127.0.0.1:9001
...
啟動fpm後查看進程:ps -aux|grep fpm

#root 27155 0.0 0.1 144704 2720 ? Ss 15:16 0:00 php-fpm: master process (/usr/local/php7/etc/php-fpm.conf)
nobody 27156 0.0 0.1 144676 2416 ? S 15:16 0:00 php-fpm : pool web1
nobody 27157 0.0 0.1 144676 2416 ? S 15:16 0:00 php-fpm: pool web1
nobody 27159 0.0 0.1 144680 ##nobody 27159 0.0 0.1 144680 233f ##nobody 27160 0.0 0.1 144680 2376 ? S 15:16 0:00 php-fpm: pool web2
#具體實作上worker pool透過fpm_worker_pool_s這個結構表示,多個worker pool#具體實作上worker pool透過fpm_worker_pool_s這個結構表示,多個worker pool組成一個單鍊錶:#rrrpool ##1.3.3 FPM的初始化
接下來看下fpm的啟動流程,從main()函數開始:

struct fpm_worker_pool_s {
struct fpm_worker_pool_s next; //指向下一个worker pool
struct fpm_worker_pool_config_s config; //conf配置:pm、max_children、start_servers...
int listening_socket; //监听的套接字
...
//以下这个值用于master定时检查、记录worker数
struct fpm_child_s *children; //当前pool的worker链表
int running_children; //当前pool的worker运行总数
int idle_spawn_rate;
int warn_max_children;

struct fpm_scoreboard_s *scoreboard; //记录worker的运行信息,比如空闲、忙碌worker数
...
}

fpm_init()主要有以下幾個關鍵操作:

#(1)fpm_conf_init_main():

解析php-fpm.conf設定文件,分配worker pool記憶體結構並儲存到全域變數:fpm_worker_all_pools,各worker pool設定解析到fpm_worker_pool_s->config。

(2)fpm​​_scoreboard_init_main(): 分配用於記錄worker進程運行資訊的共享內存,按照worker pool的最大worker進程數分配,每個worker pool分配一個fpm_scoreboard_s結構,pool下對應的每個worker進程分配一個fpm_scoreboard_proc_s結構,各結構的對應關係如下圖。

(3)fpm_signals_init_main():

static int sp[2];
int fpm_signals_init_main()
{
struct sigaction act;
//创建一个全双工管道
if (0 > socketpair(AF_UNIX, SOCK_STREAM, 0, sp)) {
    return -1;
}
//注册信号处理handler
act.sa_handler = sig_handler;
sigfillset(&act.sa_mask);
if (0 > sigaction(SIGTERM,  &act, 0) ||
    0 > sigaction(SIGINT,   &act, 0) ||
    0 > sigaction(SIGUSR1,  &act, 0) ||
    0 > sigaction(SIGUSR2,  &act, 0) ||
    0 > sigaction(SIGCHLD,  &act, 0) ||
    0 > sigaction(SIGQUIT,  &act, 0)) {
    return -1;
}
return 0;
}

这里会通过socketpair()创建一个管道,这个管道并不是用于master与worker进程通信的,它只在master进程中使用,具体用途在稍后介绍event事件处理时再作说明。另外设置master的信号处理handler,当master收到SIGTERM、SIGINT、SIGUSR1、SIGUSR2、SIGCHLD、SIGQUIT这些信号时将调用sig_handler()处理:

static void sig_handler(int signo)
{
static const char sig_chars[NSIG + 1] = {
[SIGTERM] = 'T',
[SIGINT] = 'I',
[SIGUSR1] = '1',
[SIGUSR2] = '2',
[SIGQUIT] = 'Q',
[SIGCHLD] = 'C'
};
char s;
...
s = sig_chars[signo];
//将信号通知写入管道sp[1]端
write(sp[1], &s, sizeof(s));
...
}

(4)fpm_sockets_init_main()

创建每个worker pool的socket套接字。

(5)fpm_event_init_main():

启动master的事件管理,fpm实现了一个事件管理器用于管理IO、定时事件,其中IO事件通过kqueue、epoll、poll、select等管理,定时事件就是定时器,一定时间后触发某个事件。

在fpm_init()初始化完成后接下来就是最关键的fpm_run()操作了,此环节将fork子进程,启动进程管理器,另外master进程将不会再返回,只有各worker进程会返回,也就是说fpm_run()之后的操作均是worker进程的。

int fpm_run(int max_requests)
{
struct fpm_worker_pool_s wp;
for (wp = fpm_worker_all_pools; wp; wp = wp->next) {
//调用fpm_children_make() fork子进程
is_parent = fpm_children_create_initial(wp);
   if (!is_parent) {
        goto run_child;
    }
}
//master进程将进入event循环,不再往下走
fpm_event_loop(0);
run_child: //只有worker进程会到这里
*max_requests = fpm_globals.max_requests;
return fpm_globals.listening_socket; //返回监听的套接字
}

在fork后worker进程返回了监听的套接字继续main()后面的处理,而master将永远阻塞在fpm_event_loop(),接下来分别介绍master、worker进程的后续操作。

1.3.4 请求处理
fpm_run()执行后将fork出worker进程,worker进程返回main()中继续向下执行,后面的流程就是worker进程不断accept请求,然后执行PHP脚本并返回。整体流程如下:

(1)等待请求: worker进程阻塞在fcgi_accept_request()等待请求;
(2)解析请求: fastcgi请求到达后被worker接收,然后开始接收并解析请求数据,直到request数据完全到达;
(3)请求初始化: 执行php_request_startup(),此阶段会调用每个扩展的:PHP_RINIT_FUNCTION();
(4)编译、执行: 由php_execute_script()完成PHP脚本的编译、执行;
(5)关闭请求: 请求完成后执行php_request_shutdown(),此阶段会调用每个扩展的:PHP_RSHUTDOWN_FUNCTION(),然后进入步骤(1)等待下一个请求。

int main(int argc, char *argv[])
{
...
fcgi_fd = fpm_run(&max_requests);
parent = 0;
//初始化fastcgi请求
request = fpm_init_request(fcgi_fd);

//worker进程将阻塞在这,等待请求
while (EXPECTED(fcgi_accept_request(request) >= 0)) {
    SG(server_context) = (void *) request;
    init_request_info();
    
    //请求开始
    if (UNEXPECTED(php_request_startup() == FAILURE)) {
        ...
    }
    ...

    fpm_request_executing();
    //编译、执行PHP脚本
    php_execute_script(&file_handle);
    ...
    //请求结束
    php_request_shutdown((void *) 0);
    ...
}
...
//worker进程退出
php_module_shutdown();
...
}

worker进程一次请求的处理被划分为5个阶段:

FPM_REQUEST_ACCEPTING: 等待请求阶段
FPM_REQUEST_READING_HEADERS: 读取fastcgi请求header阶段
FPM_REQUEST_INFO: 获取请求信息阶段,此阶段是将请求的method、query stirng、request uri等信息保存到各worker进程的fpm_scoreboard_proc_s结构中,此操作需要加锁,因为master进程也会操作此结构
FPM_REQUEST_EXECUTING: 执行请求阶段
FPM_REQUEST_END: 没有使用
FPM_REQUEST_FINISHED: 请求处理完成
worker处理到各个阶段时将会把当前阶段更新到fpm_scoreboard_proc_s->request_stage,master进程正是通过这个标识判断worker进程是否空闲的。

1.3.5 进程管理
这一节我们来看下master是如何管理worker进程的,首先介绍下三种不同的进程管理方式:

static: 这种方式比较简单,在启动时master按照pm.max_children配置fork出相应数量的worker进程,即worker进程数是固定不变的
dynamic: 动态进程管理,首先在fpm启动时按照pm.start_servers初始化一定数量的worker,运行期间如果master发现空闲worker数低于pm.min_spare_servers配置数(表示请求比较多,worker处理不过来了)则会fork worker进程,但总的worker数不能超过pm.max_children,如果master发现空闲worker数超过了pm.max_spare_servers(表示闲着的worker太多了)则会杀掉一些worker,避免占用过多资源,master通过这4个值来控制worker数
ondemand: 这种方式一般很少用,在启动时不分配worker进程,等到有请求了后再通知master进程fork worker进程,总的worker数不超过pm.max_children,处理完成后worker进程不会立即退出,当空闲时间超过pm.process_idle_timeout后再退出
前面介绍到在fpm_run()master进程将进入fpm_event_loop():

void fpm_event_loop(int err)
{
//创建一个io read的监听事件,这里监听的就是在fpm_init()阶段中通过socketpair()创建管道sp[0]
//当sp[0]可读时将回调fpm_got_signal()
fpm_event_set(&signal_fd_event, fpm_signals_get_fd(), FPM_EV_READ, &fpm_got_signal, NULL);
fpm_event_add(&signal_fd_event, 0);
//如果在php-fpm.conf配置了request_terminate_timeout则启动心跳检查
if (fpm_globals.heartbeat > 0) {
    fpm_pctl_heartbeat(NULL, 0, NULL);
}
//定时触发进程管理
fpm_pctl_perform_idle_server_maintenance_heartbeat(NULL, 0, NULL);

//进入事件循环,master进程将阻塞在此
while (1) {
    ...
    //等待IO事件
    ret = module->wait(fpm_event_queue_fd, timeout);
    ...
    //检查定时器事件
    ...
}
}

这就是master整体的处理,其进程管理主要依赖注册的几个事件,接下来我们详细分析下这几个事件的功能。

(1)sp[1]管道可读事件:

在fpm_init()阶段master曾创建了一个全双工的管道:sp,然后在这里创建了一个sp[0]可读的事件,当sp[0]可读时将交由fpm_got_signal()处理,向sp[1]写数据时sp[0]才会可读,那么什么时机会向sp[1]写数据呢?前面已经提到了:当master收到注册的那几种信号时会写入sp[1]端,这个时候将触发sp[0]可读事件。

这个事件是master用于处理信号的,我们根据master注册的信号逐个看下不同用途:

SIGINT/SIGTERM/SIGQUIT: 退出fpm,在master收到退出信号后将向所有的worker进程发送退出信号,然后master退出
SIGUSR1: 重新加载日志文件,生产环境中通常会对日志进行切割,切割后会生成一个新的日志文件,如果fpm不重新加载将无法继续写入日志,这个时候就需要向master发送一个USR1的信号
SIGUSR2: 重启fpm,首先master也是会向所有的worker进程发送退出信号,然后master会调用execvp()重新启动fpm,最后旧的master退出
SIGCHLD: 这个信号是子进程退出时操作系统发送给父进程的,子进程退出时,内核将子进程置为僵尸状态,这个进程称为僵尸进程,它只保留最小的一些内核数据结构,以便父进程查询子进程的退出状态,只有当父进程调用wait或者waitpid函数查询子进程退出状态后子进程才告终止,fpm中当worker进程因为异常原因(比如coredump了)退出而非master主动杀掉时master将受到此信号,这个时候父进程将调用waitpid()查下子进程的退出,然后检查下是不是需要重新fork新的worker
具体处理逻辑在fpm_got_signal()函数中,这里不再罗列。

(2)fpm_pctl_perform_idle_server_maintenance_heartbeat():

这是进程管理实现的主要事件,master启动了一个定时器,每隔1s触发一次,主要用于dynamic、ondemand模式下的worker管理,master会定时检查各worker pool的worker进程数,通过此定时器实现worker数量的控制,处理逻辑如下:

static void fpm_pctl_perform_idle_server_maintenance(struct timeval now)
{
for (wp = fpm_worker_all_pools; wp; wp = wp->next) {
struct fpm_child_s last_idle_child = NULL; //空闲时间最久的worker
int idle = 0; //空闲worker数
int active = 0; //忙碌worker数
    for (child = wp->children; child; child = child->next) {
        //根据worker进程的fpm_scoreboard_proc_s->request_stage判断
        if (fpm_request_is_idle(child)) {
            //找空闲时间最久的worker
            ...
            idle++;
        }else{
            active++;
        }
    }
    ...
    //ondemand模式
    if (wp->config->pm == PM_STYLE_ONDEMAND) {
        if (!last_idle_child) continue;

        fpm_request_last_activity(last_idle_child, &last);
        fpm_clock_get(&now);
        if (last.tv_sec < now.tv_sec - wp->config->pm_process_idle_timeout) {
            //如果空闲时间最长的worker空闲时间超过了process_idle_timeout则杀掉该worker
            last_idle_child->idle_kill = 1;
            fpm_pctl_kill(last_idle_child->pid, FPM_PCTL_QUIT);
        } 
        continue;
    }
    //dynamic
    if (wp->config->pm != PM_STYLE_DYNAMIC) continue;
    if (idle > wp->config->pm_max_spare_servers && last_idle_child) {
        //空闲worker太多了,杀掉
        last_idle_child->idle_kill = 1;
        fpm_pctl_kill(last_idle_child->pid, FPM_PCTL_QUIT);
        wp->idle_spawn_rate = 1;
        continue;
    }
    if (idle < wp->config->pm_min_spare_servers) {
        //空闲worker太少了,如果总worker数未达到max数则fork
        ...
    }
}
}

(3)fpm_pctl_heartbeat():

这个事件是用于限制worker处理单个请求最大耗时的,php-fpm.conf中有一个request_terminate_timeout的配置项,如果worker处理一个请求的总时长超过了这个值那么master将会向此worker进程发送kill -TERM信号杀掉worker进程,此配置单位为秒,默认值为0表示关闭此机制,另外fpm打印的slow log也是在这里完成的。

static void fpm_pctl_check_request_timeout(struct timeval now)
{
struct fpm_worker_pool_s wp;
for (wp = fpm_worker_all_pools; wp; wp = wp->next) {
    int terminate_timeout = wp->config->request_terminate_timeout;
    int slowlog_timeout = wp->config->request_slowlog_timeout;
    struct fpm_child_s *child;

    if (terminate_timeout || slowlog_timeout) { 
        for (child = wp->children; child; child = child->next) {
            //检查当前当前worker处理的请求是否超时
            fpm_request_check_timed_out(child, now, terminate_timeout, slowlog_timeout);
        }
    }
}
}

除了上面这几个事件外还有一个没有提到,那就是ondemand模式下master监听的新请求到达的事件,因为ondemand模式下fpm启动时是不会预创建worker的,有请求时才会生成子进程,所以请求到达时需要通知master进程,这个事件是在fpm_children_create_initial()时注册的,事件处理函数为fpm_pctl_on_socket_accept(),具体逻辑这里不再展开,比较容易理解。

到目前为止我们已经把fpm的核心实现介绍完了,事实上fpm的实现还是比较简单的。

以上是Fpm啟動機制及流程的詳細分析(附程式碼)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:博客园。如有侵權,請聯絡admin@php.cn刪除
繼續使用PHP:耐力的原因繼續使用PHP:耐力的原因Apr 19, 2025 am 12:23 AM

PHP仍然流行的原因是其易用性、靈活性和強大的生態系統。 1)易用性和簡單語法使其成為初學者的首選。 2)與web開發緊密結合,處理HTTP請求和數據庫交互出色。 3)龐大的生態系統提供了豐富的工具和庫。 4)活躍的社區和開源性質使其適應新需求和技術趨勢。

PHP和Python:探索他們的相似性和差異PHP和Python:探索他們的相似性和差異Apr 19, 2025 am 12:21 AM

PHP和Python都是高層次的編程語言,廣泛應用於Web開發、數據處理和自動化任務。 1.PHP常用於構建動態網站和內容管理系統,而Python常用於構建Web框架和數據科學。 2.PHP使用echo輸出內容,Python使用print。 3.兩者都支持面向對象編程,但語法和關鍵字不同。 4.PHP支持弱類型轉換,Python則更嚴格。 5.PHP性能優化包括使用OPcache和異步編程,Python則使用cProfile和異步編程。

PHP和Python:解釋了不同的範例PHP和Python:解釋了不同的範例Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP和Python:深入了解他們的歷史PHP和Python:深入了解他們的歷史Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

在PHP和Python之間進行選擇:指南在PHP和Python之間進行選擇:指南Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP和框架:現代化語言PHP和框架:現代化語言Apr 18, 2025 am 12:14 AM

PHP在現代化進程中仍然重要,因為它支持大量網站和應用,並通過框架適應開發需求。 1.PHP7提升了性能並引入了新功能。 2.現代框架如Laravel、Symfony和CodeIgniter簡化開發,提高代碼質量。 3.性能優化和最佳實踐進一步提升應用效率。

PHP的影響:網絡開發及以後PHP的影響:網絡開發及以後Apr 18, 2025 am 12:10 AM

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP類型提示如何起作用,包括標量類型,返回類型,聯合類型和無效類型?PHP類型提示如何起作用,包括標量類型,返回類型,聯合類型和無效類型?Apr 17, 2025 am 12:25 AM

PHP類型提示提升代碼質量和可讀性。 1)標量類型提示:自PHP7.0起,允許在函數參數中指定基本數據類型,如int、float等。 2)返回類型提示:確保函數返回值類型的一致性。 3)聯合類型提示:自PHP8.0起,允許在函數參數或返回值中指定多個類型。 4)可空類型提示:允許包含null值,處理可能返回空值的函數。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

VSCode Windows 64位元 下載

VSCode Windows 64位元 下載

微軟推出的免費、功能強大的一款IDE編輯器

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用