搜尋
首頁後端開發Python教學Python實作二元樹的演算法實例

Python實作二元樹的演算法實例

Feb 25, 2019 am 10:42 AM
python二元樹演算法

這篇文章帶給大家的內容是關於Python實作二元樹的演算法實例,有一定的參考價值,有需要的朋友可以參考一下,希望對你有幫助。

節點定義

class Node(object):
    def __init__(self, left_child, right_child, value):
        self._left_child = left_child
        self._right_child = right_child
        self._value = value

    @property
    def left_child(self):
        return self._left_child

    @property
    def right_child(self):
        return self._right_child

    @left_child.setter
    def left_child(self, value):
        self._left_child = value

    @right_child.setter
    def right_child(self, value):
        self._right_child = value

    @property
    def value(self):
        return self._value

    @value.setter
    def value(self, value):
        self._value = value

二元樹定義

class Tree(object):
    def __init__(self, value):
        self._root = Node(None, None, value=value)

    @property
    def root(self):
        return self._root

先序遍歷

遞歸方式

'''
先序遍历,递归方式
'''
def preoder(root):
    if not isinstance(root, Node):
        return None
    preorder_res = []
    if root:
        preorder_res.append(root.value)
        preorder_res += preoder(root.left_child)
        preorder_res += preoder(root.right_child)

    return preorder_res

非遞歸方式

'''
先序遍历,非递归方式
'''
def pre_order_not_recursion(root):
    if not isinstance(root, Node):
        return None

    stack = [root]
    result = []
    while stack:
        node = stack.pop(-1)
        if node:
            result.append(node.value)
            stack.append(node.right_child)
            stack.append(node.left_child)
    return result

中序遍歷

遞歸方式

'''
中序遍历,递归方式
'''
def middle_order(root):
    if not isinstance(root, Node):
        return None
    middle_res = []
    if root:
        middle_res += middle_order(root.left_child)
        middle_res.append(root.value)
        middle_res += middle_order(root.right_child)
    return middle_res

非遞歸方式

'''
中序遍历,非递归方式
'''
def middle_order_bot_recursion(root):
    if not isinstance(root, Node):
        return None

    result = []
    stack = [root.right_child, root.value, root.left_child]
    while stack:
        temp = stack.pop(-1)
        if temp:
            if isinstance(temp, Node):
                stack.append(temp.right_child)
                stack.append(temp.value)
                stack.append(temp.left_child)
            else:
                result.append(temp)
    return result

後序遍歷

遞歸方式

'''
后序遍历,递归方式
'''
def post_order(root):
    if not isinstance(root, Node):
        return None
    post_res = []
    if root:
        post_res += post_order(root.left_child)
        post_res += post_order(root.right_child)
        post_res.append(root.value)
    return post_res

非遞歸方式

'''
后序遍历,非递归方式
'''
def post_order_not_recursion(root):
    if not isinstance(root, Node):
        return None

    stack = [root.value, root.right_child, root.left_child]
    result = []

    while stack:
        temp_node = stack.pop(-1)
        if temp_node:
            if isinstance(temp_node, Node):
                stack.append(temp_node.value)
                stack.append(temp_node.right_child)
                stack.append(temp_node.left_child)
            else:
                result.append(temp_node)

    return result

分層遍歷

'''
分层遍历,使用队列实现
'''
def layer_order(root):
    if not isinstance(root, Node):
        return None

    queue = [root.value, root.left_child, root.right_child]
    result = []
    while queue:
        temp = queue.pop(0)
        if temp:
            if isinstance(temp, Node):
                queue.append(temp.value)
                queue.append(temp.left_child)
                queue.append(temp.right_child)
            else:
                result.append(temp)

    return result

#計算二元樹結點個數

'''
计算二叉树结点个数,递归方式
NodeCount(root) = NodeCount(root.left_child) + NodeCount(root.right_child)
'''
def node_count(root):
    if root and not isinstance(root, Node):
        return None

    if root:
        return node_count(root.left_child) + node_count(root.right_child) + 1
    else:
        return 0


'''
计算二叉树结点个数,非递归方式
借用分层遍历计算
'''
def node_count_not_recursion(root):
    if root and not isinstance(root, Node):
        return None

    return len(layer_order(root))

計算二元樹深度

'''
计算二叉树深度,递归方式
tree_deep(root) = 1 + max(tree_deep(root.left_child), tree_deep(root.right_child))
'''
def tree_deep(root):
    if root and not isinstance(root, Node):
        return None

    if root:
        return 1 + max(tree_deep(root.left_child), tree_deep(root.right_child))
    else:
        return 0

'''
计算二叉树深度,非递归方法
同理参考分层遍历的思想
'''
def tree_deep_not_recursion(root):
    if root and not isinstance(root, Node):
        return None
    result = 0
    queue = [(root, 1)]
    while queue:
        temp_node, temp_layer = queue.pop(0)
        if temp_node:
            queue.append((temp_node.left_child, temp_layer+1))
            queue.append((temp_node.right_child, temp_layer+1))
            result = temp_layer + 1

    return result-1

計算二元樹第k層節點個數

'''
计算二叉树第k层节点个数,递归方式
kth_node_count(root, k) = kth_node_count(root.left_count, k-1) + kth_node_count(root.right_count, k-1)
'''
def kth_node_count(root, k):
    if root and not isinstance(root, Node):
        return None

    if not root or k  k:
                return result
            else:
                queue.append((temp_node.left_child, temp_layer+1))
                queue.append((temp_node.right_child, temp_layer+1))
    return result

計算二元樹葉子節點個數

'''
计算二叉树叶子节点个数,递归方式
关键点是叶子节点的判断标准,左右孩子皆为None
'''
def leaf_count(root):
    if root and not isinstance(root, Node):
        return None

    if not root:
        return 0
    if not root.left_child and not root.right_child:
        return 1

    return leaf_count(root.left_child) + leaf_count(root.right_child)

判斷兩個二元樹是不是相同

'''
判断两个二叉树是不是相同,递归方式
isSame(root1, root2) = (root1.value == root2.value)
                    and isSame(root1.left, root2.left) 
                    and isSame(root1.right, root2.right)
'''
def is_same_tree(root1, root2):
    if not root1 and not root2:
        return True

    if root1 and root2:
        return (root1.value == root2.value) and \
               is_same_tree(root1.left_child, root2.left_child) and \
               is_same_tree(root1.right_child, root2.right_child)
    else:
        return False

判斷是否為二分查找樹BST

'''
判断是否为二分查找树BST,递归方式
二分查找树的定义搞清楚,二分查找树的中序遍历结果为递增序列
'''
def is_bst_tree(root):
    if root and not isinstance(root, Node):
        return None

    def is_asc(order):
        for i in range(len(order)-1):
            if order[i] > order[i+1]:
                return False
        return True

    return is_asc(middle_order_bot_recursion(root))

測試方法

if __name__ == "__main__":
    tree = Tree(1)
    tree1 = Tree(1)
    node6 = Node(None, None, 7)
    node5 = Node(None, None, 6)
    node4 = Node(None, None, 5)
    node3 = Node(None, None, 4)
    node2 = Node(node5, node6, 3)
    node1 = Node(node3, node4, 2)
    tree.root.left_child = node1
    tree.root.right_child = node2
    tree1.root.left_child = node2
    tree1.root.right_child = node2
    print(is_bst_tree(tree.root))

#

以上是Python實作二元樹的演算法實例的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:segmentfault。如有侵權,請聯絡admin@php.cn刪除
Python:自動化,腳本和任務管理Python:自動化,腳本和任務管理Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python和時間:充分利用您的學習時間Python和時間:充分利用您的學習時間Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:遊戲,Guis等Python:遊戲,Guis等Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python vs.C:申請和用例Python vs.C:申請和用例Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時的Python計劃:一種現實的方法2小時的Python計劃:一種現實的方法Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序Python:探索其主要應用程序Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

您可以在2小時內學到多少python?您可以在2小時內學到多少python?Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎?Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
4 週前By尊渡假赌尊渡假赌尊渡假赌

熱工具

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )專業的PHP整合開發工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript開發工具