首頁 >後端開發 >Python教學 >python中的排序操作和heapq模組的介紹(程式碼範例)

python中的排序操作和heapq模組的介紹(程式碼範例)

不言
不言轉載
2018-12-15 10:15:242402瀏覽

本篇文章帶給大家的內容是關於python中的排序操作和heapq模組的介紹(程式碼範例),有一定的參考價值,有需要的朋友可以參考一下,希望對你有幫助。

說到排序,很多人可能第一想到的就是sorted,但是你可能不知道python中其實還有還就中方法喲,並且好多種場景下效率都會比sorted高。那麼接下來我就依序來介紹我所知道的排序操作。
sorted(iterable, *, key=None, reverse=False)

list1=[1,6,4,3,9,5]
list2=['12','a6','4','c34','b9','5']

print(sorted(list1))    #[1, 3, 4, 5, 6, 9]
print(sorted(list2))    #['12', '4', '5', 'a6', 'b9', 'c34']
#总结上面两种排序:字符串排序根据元素首字符的ASCII比较进行排序,
#数字类型按照大小排序,数字不能混合排序
list3=[
    {'name':'jim','age':23,'price':500},
    {'name':'mase','age':23,'price':600},
    {'name':'tom','age':25,'price':2000},
    {'name':'alice','age':22,'price':300},
    {'name':'rose','age':21,'price':2400},
]
print(sorted(list3,key=lambda s:(s['age'],s['price'])))
#[{'name': 'rose', 'age': 21, 'price': 2400}, {'name': 'alice', 'age': 22, 'price': 300}, {'name': 'jim', 'age': 23, 'price': 500}, {'name': 'mase', 'age': 23, 'price': 600}, {'name': 'tom', 'age': 25, 'price': 2000}]
最后的reverse参数我就不作说明了,就是把结果进行倒序,可用作降序排列
介绍一种比lambda效率高的方式:
operator模块中的方法itemgetter
>>> itemgetter(1)('ABCDEFG')
'B'
>>> itemgetter(1,3,5)('ABCDEFG')
('B', 'D', 'F')
>>> itemgetter(slice(2,None))('ABCDEFG')
'CDEFG
运用到上述代码
print(sorted(list3,key=itemgetter('age','price')))    #结果同上但效率会比较高

接下來的排序運算涉及到一個非常重要的一種資料結構-堆,不過今天我主要介紹這個模組中的方法,具體什麼是堆,及其還有一種資料結構──棧,有時間我會專門寫一篇文章來介紹。
heapq(Python內建的模組)

__all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge',
           'nlargest', 'nsmallest', 'heappushpop']

接下來我們一一介紹。
nlargest與nsmallest,透過字面意思可以看出方法大致的作用,接下來動手測驗

nlargest(n, iterable, key=None)
nsmallest(n, iterable, key=None)
#n:查找个数    iterable:可迭代对象    key:同sorted
list1=[1,6,4,3,9,5]
list2=['12','a6','4','c34','b9','5']
list3=[
    {'name':'jim','age':23,'price':500},
    {'name':'mase','age':23,'price':600},
    {'name':'tom','age':25,'price':2000},
    {'name':'alice','age':22,'price':300},
    {'name':'rose','age':21,'price':2400},
]
from operator import itemgetter
import heapq
print(heapq.nlargest(len(list1),list1))
print(heapq.nlargest(len(list2),list2))
print(heapq.nlargest(len(list3),list3,key=itemgetter('age','price')))
#以上代码输出结果同sorted
print(heapq.nsmallest(len(list1),list1))
print(heapq.nsmallest(len(list2),list2))
print(heapq.nsmallest(len(list3),list3,key=itemgetter('age','price')))
#结果是降序
[1, 3, 4, 5, 6, 9]
['12', '4', '5', 'a6', 'b9', 'c34']
[{'name': 'rose', 'age': 21, 'price': 2400}, {'name': 'alice', 'age': 22, 'price': 300}, {'name': 'jim', 'age': 23, 'price': 500}, {'name': 'mase', 'age': 23, 'price': 600}, {'name': 'tom', 'age': 25, 'price': 2000}]

heappush,heappop,heapify,heapreplace,heappushpop
#堆結構特徵:heap[0]永遠是最小的元素(利用此特性排序)

heapify:对序列进行堆排序,
heappush:在堆序列中添加值
heappop:删除最小值并返回
heappushpop:添加并删除堆中最小值且返回,添加之后删除
heapreplace:添加并删除队中最小值且返回,删除之后添加
nums=[54,23,64.,323,53,3,212,453,65]
heapify(nums)    #先进行堆排序
print(heappop(nums))    #3
print(heappush(nums,50))    #添加操作,返回None
print(heappushpop(nums,10))    #由于是添加后删除,所以返回10
print(heappop(nums))    #23
print(heapreplace(nums,10))    #和heappushpop,返回50
print(nums)    #[10, 53, 54, 65, 323, 64.0, 212, 453]

merge:合併多個序列

list1 = [1, 2, 3, 4, 5, 12]
set1 = {2, 3, 9, 23, 54}
s = list(merge(list1,set1))
print(s)    #[1, 2, 2, 3, 3, 4, 5, 9, 12, 54, 23]
#发现输出结果不仅进行了合并,还进行了排序,有意思哈,可是换个代码测验,你再看一下
list1 = [31, 2, 83, 24, 5, 12]
set1 = {2, 83, 9, 23, 54}
s = list(merge(list1,set1))
print(s)    #[2, 9, 31, 2, 83, 24, 5, 12, 83, 54, 23]
#你们肯定想这是什么鬼,一点都没有头绪,其实经过我的多次测验,还是有规律的,但是由于没有什么作用就不大篇幅说明了,喜欢刨根问题的小伙伴可以尝试自己思考一下。

小夥伴們有沒有想我為何介紹這個模組,並且和排序放在一起呢,其實在很多時候我們需要找序列中的前幾個最大值或者最小值,使用此模組中的方法是最好不過的了。
如果需要全部排序我們使用sorted,需要找最大或最小的幾個或多個我們使用alargest/asmallest,找出最大最小使用max/min

##

以上是python中的排序操作和heapq模組的介紹(程式碼範例)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述:
本文轉載於:segmentfault.com。如有侵權,請聯絡admin@php.cn刪除