這篇文章帶給大家的內容是關於PHP中的SAPI是什麼?如何實現? (圖文),有一定的參考價值,有需要的朋友可以參考一下,希望對你有幫助。
在Thread和Process中,應優選Process,因為Process更穩定,而且,Process可以分佈在多台機器上,而Thread最多只能分佈在同一台機器的多個CPU上。
Python的 multiprocessing 模組不但支援多進程, 其中 managers 子模組也支援把多進程分佈到多台機器上。一個服務進程可以作為調度者,將任務分佈到其他多個進程中,並依靠網路通訊。由於managers模組封裝很好,不必了解網路通訊的細節,就可以輕鬆地編寫分散式多進程程式。
透過managers模組把Queue透過網路暴露出去,就可以讓其他機器的進程存取Queue了。先看服務進程,服務進程負責啟動Queue,把Queue註冊到網路上,然後往Queue裡面寫入任務。
BaseManager: 提供了不同機器進程之間共享資料的一種方法;
(重要的点: ip:port)
# task_master.py import random from multiprocessing import freeze_support from queue import Queue from multiprocessing.managers import BaseManager # 1. 创建需要的队列 # task_queue:发送任务的队列 # coding=utf-8 import random,time from queue import Queue from multiprocessing.managers import BaseManager from multiprocessing import freeze_support task_queue = Queue() # 发送任务的队列: result_queue = Queue() # 接收结果的队列: class QueueManager(BaseManager): # 从BaseManager继承的QueueManager: pass # windows下运行 def return_task_queue(): global task_queue return task_queue # 返回发送任务队列 def return_result_queue (): global result_queue return result_queue # 返回接收结果队列 def test(): # 把两个Queue都注册到网络上, callable参数关联了Queue对象,它们用来进行进程间通信,交换对象 #QueueManager.register('get_task_queue', callable=lambda: task_queue) #QueueManager.register('get_result_queue', callable=lambda: result_queue) QueueManager.register('get_task_queue', callable=return_task_queue) QueueManager.register('get_result_queue', callable=return_result_queue) # 绑定端口4000, 设置验证码'sheenstar': #manager = QueueManager(address=('', 4000), authkey=b'sheenstar') # windows需要写ip地址 manager = QueueManager(address=('192.168.1.160', 4000), authkey=b'sheenstar') manager.start() # 启动Queue: # 获得通过网络访问的Queue对象: task = manager.get_task_queue() result = manager.get_result_queue() for i in range(13): # 放几个任务进去: n = random.randint(0, 10000) print('Put task %d...' % n) task.put(n) # 从result队列读取结果: print('Try get results...') for i in range(13): r = result.get(timeout=10) print('Result: %s' % r) # 关闭: manager.shutdown() print('master exit.') if __name__=='__main__': freeze_support() print('start!') test()
運行程序,會等待執行結果10s,如果沒有worker端獲取任務,返回結果,程序將報錯誤。
當我們在一台機器上寫多進程程式時,建立的Queue 可以直接拿來用,但是,在分散式多進程環境下,新增任務到Queue不可以直接對原始的task_queue 進行操作,那樣就繞過了QueueManager 的封裝,必須透過manager.get_task_queue()取得的Queue 介面新增。
# coding=utf-8 import time, sys from queue import Queue from multiprocessing.managers import BaseManager # 创建类似的QueueManager: class QueueManager(BaseManager): pass # 由于这个QueueManager只从网络上获取Queue,所以注册时只提供名字: QueueManager.register('get_task_queue') QueueManager.register('get_result_queue') # 连接到服务器,也就是运行task_master.py的机器: server_addr = '192.168.1.160' print('Connect to server %s...' % server_addr) # 端口和验证码注意保持与task_master.py设置的完全一致: m = QueueManager(address=(server_addr, 4000), authkey=b'sheenstar') # 从网络连接: try: m.connect() except: print('请先启动task_master.py!') #sys.exit("sorry, goodbye!"); # 获取Queue的对象: task = m.get_task_queue() result = m.get_result_queue() # 从task队列取任务,并把结果写入result队列: for i in range(13): try: n = task.get() print('run task %d * %d...' % (n, n)) r = '%d * %d = %d' % (n, n, n*n) time.sleep(1) result.put(r) except ConnectionResetError as e: print("任务执行结束,自动断开连接") # 处理结束: print('worker exit.')
使用命令列執行程序,結果更直覺
以上是python中分散式進程的詳細介紹(附範例)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

Atom編輯器mac版下載
最受歡迎的的開源編輯器

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

禪工作室 13.0.1
強大的PHP整合開發環境