本篇文章帶給大家的內容是關於什麼是Python元類別? Python元類別的介紹 ,有一定的參考價值,有需要的朋友可以參考一下,希望對你有幫助。
兩句話掌握python最難知識點——元類
千萬不要被所謂“元類是99%的python程式設計師不會用到的特性”這類的說辭嚇住。因為每個中國人,都是天生的元類使用者
學懂元類,你只需要知道兩句話:
道生一,一生二,二生三,三生萬物
我是誰?我從哪裡來?我要到哪裡去? (部落客認為應該是:我是誰?我從哪裡來?我能做什麼?)
在python世界,擁有一個永恆的道,那就是“type”,請記在腦海中,type就是道。如此廣袤無垠的python生態圈,都是由type產生出來的。
道生一,一生二,二生三,三生萬物。
道 即是type
#一 即是metaclass(元類,或叫類別產生器)
二 即是class(類,或稱為實例產生器)
##三 即是instance(實例)
萬物 即是實例的各種屬性與方法,我們平常使用python時,呼叫的就是它們。
# 创建一个Hello类,拥有属性say_hello ----二的起源 class Hello(): def say_hello(self, name='world'): print('Hello, %s.' % name) # 从Hello类创建一个实例hello ----二生三 hello = Hello() # 使用hello调用方法say_hello ----三生万物 hello.say_hello()輸出效果:
Hello, world.
這就是一個標準的「二生三,三生萬物」過程。 從類別到我們可以呼叫的方法,用了這兩個步驟。
那我們不由自主要問,類別從何而來呢?回到程式碼的第一行。class Hello其實是一個函數的“語義化簡稱”,只為了讓程式碼更淺顯易懂,它的另一個寫法是:
def fn(self, name='world'): # 假如我们有一个函数叫fn print('Hello, %s.' % name) Hello = type('Hello', (object,), dict(say_hello=fn)) # 通过type创建Hello class ---- 神秘的“道”,可以点化一切,这次我们直接从“道”生出了“二”這樣的寫法,就和之前的Class Hello寫法作用完全相同,你可以試試創建實例並調用
# 从Hello类创建一个实例hello ----二生三,完全一样 hello = Hello() # 使用hello调用方法say_hello ----三生万物,完全一样 hello.say_hello()輸出效果:
Hello, world. ----调用结果完全一样。我們回頭看一眼最精彩的地方,
道直接生出了二:
Hello = type('Hello', (object,), dict(say_hello=fn))這就是“道”,python世界的起源,你可以為此而驚嘆。
注意它的三個參數!暗合人類的三大永恆命題:我是誰,我從哪裡來,我要到哪裡去。
- 第一個參數:我是誰。在這裡,我需要一個區分於其它一切的命名,以上的實例將我命名為「Hello」
- 第二個參數:我從哪裡來
在這裡,我需要知道從哪裡來,也就是我的“父類別”,以上實例中我的父類別是“object”——python中一種非常初級的類別。
- 第三個參數:我要到哪裡去
在這裡,我們將需要呼叫的方法和屬性包含到一個字典裡,然後再作為參數傳入。以上實例中,我們有一個say_hello方法包裝進了字典中。
class Hello(object){ # class 后声明“我是谁” # 小括号内声明“我来自哪里” # 中括号内声明“我要到哪里去” def say_hello(){ } }
- 造物主,可以直接創造單一的人,但這是一件苦役。造物主會先創造「人」這個物種,再批量創造具體的個人。並將三大永恆命題,一直傳承下去。
“道”可以直接生出“二”,但它會先生出“一”,再批量地製造“二”。
type可以直接產生類別(class),但也可以先生成元類別(metaclass),再使用元類別批次客製化類別(class)。
元類別來解決問題。
以下是建立一個專門「打招呼」用的元類別程式碼:class SayMetaClass(type): def __new__(cls, name, bases, attrs): attrs['say_'+name] = lambda self,value,saying=name: print(saying+','+value+'!') return type.__new__(cls, name, bases, attrs)記住兩點:
1、元類別是由「type」衍生而出,所以父類別需要傳入type。 【
道生一,所以一必須包含道】
2、元类的操作都在 __new__中完成,它的第一个参数是将创建的类,之后的参数即是三大永恒命题:我是谁,我从哪里来,我将到哪里去。 它返回的对象也是三大永恒命题,接下来,这三个参数将一直陪伴我们。
在__new__中,我只进行了一个操作,就是
attrs['say_'+name] = lambda self,value,saying=name: print(saying+','+value+'!')
它跟据类的名字,创建了一个类方法。比如我们由元类创建的类叫“Hello”,那创建时就自动有了一个叫“say_Hello”的类方法,然后又将类的名字“Hello”作为默认参数saying,传到了方法里面。然后把hello方法调用时的传参作为value传进去,最终打印出来。
那么,一个元类是怎么从创建到调用的呢?
来!一起根据道生一、一生二、二生三、三生万物的准则,走进元类的生命周期吧!
# 道生一:传入type class SayMetaClass(type): # 传入三大永恒命题:类名称、父类、属性 def __new__(cls, name, bases, attrs): # 创造“天赋” attrs['say_'+name] = lambda self,value,saying=name: print(saying+','+value+'!') # 传承三大永恒命题:类名称、父类、属性 return type.__new__(cls, name, bases, attrs) # 一生二:创建类 class Hello(object, metaclass=SayMetaClass): pass # 二生三:创建实列 hello = Hello() # 三生万物:调用实例方法 hello.say_Hello('world!')
输出为
Hello, world!
注意:通过元类创建的类,第一个参数是父类,第二个参数是metaclass
普通人出生都不会说话,但有的人出生就会打招呼说“Hello”,“你好”,“sayolala”,这就是天赋的力量。它会给我们面向对象的编程省下无数的麻烦。
现在,保持元类不变,我们还可以继续创建Sayolala, Nihao类,如下:
# 一生二:创建类 class Sayolala(object, metaclass=SayMetaClass): pass # 二生三:创建实列 s = Sayolala() # 三生万物:调用实例方法 s.say_Sayolala('japan!')
输出
Sayolala, japan!
也可以说中文
# 一生二:创建类 class Nihao(object, metaclass=SayMetaClass): pass # 二生三:创建实列 n = Nihao() # 三生万物:调用实例方法 n.say_Nihao('中华!')
输出
Nihao, 中华!
再来一个小例子:
# 道生一 class ListMetaclass(type): def __new__(cls, name, bases, attrs): # 天赋:通过add方法将值绑定 attrs['add'] = lambda self, value: self.append(value) return type.__new__(cls, name, bases, attrs) # 一生二 class MyList(list, metaclass=ListMetaclass): pass # 二生三 L = MyList() # 三生万物 L.add(1)
现在我们打印一下L
print(L) >>> [1]
而普通的list没有add()方法
L2 = list() L2.add(1) >>>AttributeError: 'list' object has no attribute 'add'
太棒了!学到这里,你是不是已经体验到了造物主的乐趣?
年轻的造物主,请随我一起开创新世界。
我们选择两个领域,一个是Django的核心思想,“Object Relational Mapping”,即对象-关系映射,简称ORM。
这是Django的一大难点,但学完了元类,一切变得清晰。你对Django的理解将更上一层楼!
另一个领域是爬虫领域(黑客领域),一个自动搜索网络上的可用代理,然后换着IP去突破别的人反爬虫限制。
这两项技能非常有用,也非常好玩!
挑战一:通过元类创建ORM
准备工作,创建一个Field类
class Field(object): def __init__(self, name, column_type): self.name = name self.column_type = column_type def __str__(self): return '<%s:%s>' % (self.__class__.__name__, self.name)
它的作用是
在Field类实例化时将得到两个参数,name和column_type,它们将被绑定为Field的私有属性,如果要将Field转化为字符串时,将返回“Field:XXX” , XXX是传入的name名称。
准备工作:创建StringField和IntergerField
class StringField(Field): def __init__(self, name): super(StringField, self).__init__(name, 'varchar(100)') class IntegerField(Field): def __init__(self, name): super(IntegerField, self).__init__(name, 'bigint')
它的作用是
在StringField,IntegerField实例初始化时,时自动调用父类的初始化方式。
道生一
class ModelMetaclass(type): def __new__(cls, name, bases, attrs): if name=='Model': return type.__new__(cls, name, bases, attrs) print('Found model: %s' % name) mappings = dict() for k, v in attrs.items(): if isinstance(v, Field): print('Found mapping: %s ==> %s' % (k, v)) mappings[k] = v for k in mappings.keys(): attrs.pop(k) attrs['__mappings__'] = mappings # 保存属性和列的映射关系 attrs['__table__'] = name # 假设表名和类名一致 return type.__new__(cls, name, bases, attrs)
它做了以下几件事
创建一个新的字典mapping
将每一个类的属性,通过.items()遍历其键值对。如果值是Field类,则打印键值,并将这一对键值绑定到mapping字典上。
将刚刚传入值为Field类的属性删除。
创建一个专门的__mappings__属性,保存字典mapping。
创建一个专门的__table__属性,保存传入的类的名称。
一生二
class Model(dict, metaclass=ModelMetaclass): def __init__(self, **kwarg): super(Model, self).__init__(**kwarg) def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError("'Model' object has no attribute '%s'" % key) def __setattr__(self, key, value): self[key] = value # 模拟建表操作 def save(self): fields = [] args = [] for k, v in self.__mappings__.items(): fields.append(v.name) args.append(getattr(self, k, None)) sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join([str(i) for i in args])) print('SQL: %s' % sql) print('ARGS: %s' % str(args))
如果从Model创建一个子类User:
class User(Model): # 定义类的属性到列的映射: id = IntegerField('id') name = StringField('username') email = StringField('email') password = StringField('password')
这时
id= IntegerField('id')就会自动解析为:
Model.__setattr__(self, 'id', IntegerField('id'))
因为IntergerField('id')是Field的子类的实例,自动触发元类的__new__,所以将IntergerField('id')存入__mappings__并删除这个键值对。
二生三、三生万物
当你初始化一个实例的时候并调用save()方法时候
u = User(id=12345, name='Batman', email='batman@nasa.org', password='iamback') u.save()
这时先完成了二生三的过程:
先调用Model.__setattr__,将键值载入私有对象
然后调用元类的“天赋”,ModelMetaclass.__new__,将Model中的私有对象,只要是Field的实例,都自动存入u.__mappings__。
接下来完成了三生万物的过程:
通过u.save()模拟数据库存入操作。这里我们仅仅做了一下遍历__mappings__操作,虚拟了sql并打印,在现实情况下是通过输入sql语句与数据库来运行。
输出结果为
Found model: User Found mapping: name ==> <StringField:username> Found mapping: password ==> <StringField:password> Found mapping: id ==> <IntegerField:id> Found mapping: email ==> <StringField:email> SQL: insert into User (username,password,id,email) values (Batman,iamback,12345,batman@nasa.org) ARGS: ['Batman', 'iamback', 12345, 'batman@nasa.org']
年轻的造物主,你已经和我一起体验了由“道”演化“万物”的伟大历程,这也是Django中的Model版块核心原理。
接下来,请和我一起进行更好玩的爬虫实战(嗯,你现在已经是初级黑客了):网络代理的爬取吧!
挑战二:网络代理的爬取
准备工作,先爬个页面玩玩
请确保已安装requests和pyquery这两个包。
# 文件:get_page.py import requests base_headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.71 Safari/537.36', 'Accept-Encoding': 'gzip, deflate, sdch', 'Accept-Language': 'zh-CN,zh;q=0.8' } def get_page(url): headers = dict(base_headers) print('Getting', url) try: r = requests.get(url, headers=headers) print('Getting result', url, r.status_code) if r.status_code == 200: return r.text except ConnectionError: print('Crawling Failed', url) return None
这里,我们利用request包,把百度的源码爬了出来。
试一试抓百度
把这一段粘在get_page.py后面,试完删除
if(__name__ == '__main__'): rs = get_page('https://www.baidu.com') print('result:\r\n', rs)
试一试抓代理
把这一段粘在get_page.py后面,试完删除
if(__name__ == '__main__'): from pyquery import PyQuery as pq start_url = 'http://www.proxy360.cn/Region/China' print('Crawling', start_url) html = get_page(start_url) if html: doc = pq(html) lines = doc('p[name="list_proxy_ip"]').items() for line in lines: ip = line.find('.tbBottomLine:nth-child(1)').text() port = line.find('.tbBottomLine:nth-child(2)').text() print(ip+':'+port)
接下来进入正题:使用元类批量抓取代理
批量处理抓取代理
from getpage import get_page from pyquery import PyQuery as pq # 道生一:创建抽取代理的metaclass class ProxyMetaclass(type): """ 元类,在FreeProxyGetter类中加入 __CrawlFunc__和__CrawlFuncCount__ 两个参数,分别表示爬虫函数,和爬虫函数的数量。 """ def __new__(cls, name, bases, attrs): count = 0 attrs['__CrawlFunc__'] = [] attrs['__CrawlName__'] = [] for k, v in attrs.items(): if 'crawl_' in k: attrs['__CrawlName__'].append(k) attrs['__CrawlFunc__'].append(v) count += 1 for k in attrs['__CrawlName__']: attrs.pop(k) attrs['__CrawlFuncCount__'] = count return type.__new__(cls, name, bases, attrs) # 一生二:创建代理获取类 class ProxyGetter(object, metaclass=ProxyMetaclass): def get_raw_proxies(self, site): proxies = [] print('Site', site) for func in self.__CrawlFunc__: if func.__name__==site: this_page_proxies = func(self) for proxy in this_page_proxies: print('Getting', proxy, 'from', site) proxies.append(proxy) return proxies def crawl_daili66(self, page_count=4): start_url = 'http://www.66ip.cn/{}.html' urls = [start_url.format(page) for page in range(1, page_count + 1)] for url in urls: print('Crawling', url) html = get_page(url) if html: doc = pq(html) trs = doc('.containerbox table tr:gt(0)').items() for tr in trs: ip = tr.find('td:nth-child(1)').text() port = tr.find('td:nth-child(2)').text() yield ':'.join([ip, port]) def crawl_proxy360(self): start_url = 'http://www.proxy360.cn/Region/China' print('Crawling', start_url) html = get_page(start_url) if html: doc = pq(html) lines = doc('p[name="list_proxy_ip"]').items() for line in lines: ip = line.find('.tbBottomLine:nth-child(1)').text() port = line.find('.tbBottomLine:nth-child(2)').text() yield ':'.join([ip, port]) def crawl_goubanjia(self): start_url = 'http://www.goubanjia.com/free/gngn/index.shtml' html = get_page(start_url) if html: doc = pq(html) tds = doc('td.ip').items() for td in tds: td.find('p').remove() yield td.text().replace(' ', '') if __name__ == '__main__': # 二生三:实例化ProxyGetter crawler = ProxyGetter() print(crawler.__CrawlName__) # 三生万物 for site_label in range(crawler.__CrawlFuncCount__): site = crawler.__CrawlName__[site_label] myProxies = crawler.get_raw_proxies(site)
道生一:元类的__new__中,做了四件事:
将“crawl_”开头的类方法的名称推入ProxyGetter.__CrawlName__
将“crawl_”开头的类方法的本身推入ProxyGetter.__CrawlFunc_
计算符合“crawl_”开头的类方法个数
删除所有符合“crawl_”开头的类方法
怎么样?是不是和之前创建ORM的__mappings__过程极为相似?
一生二:类里面定义了使用pyquery抓取页面元素的方法
分别从三个免费代理网站抓取了页面上显示的全部代理。
如果对yield用法不熟悉,可以查看:
廖雪峰的python教程:生成器
二生三:创建实例对象crawler
三生万物:遍历每一个__CrawlFunc__
在ProxyGetter.__CrawlName__上面,获取可以抓取的的网址名。
触发类方法ProxyGetter.get_raw_proxies(site)
遍历ProxyGetter.__CrawlFunc__,如果方法名和网址名称相同的,则执行这一个方法
把每个网址获取到的代理整合成数组输出。
那么。。。怎么利用批量代理,冲击别人的网站,套取别人的密码,狂发广告水贴,定时骚扰客户? 呃!想啥呢!这些自己悟!如果悟不到,请听下回分解!
年轻的造物主,创造世界的工具已经在你手上,请你将它的威力发挥到极致!
请记住挥动工具的口诀:
道生一,一生二,二生三,三生万物
我是谁,我来自哪里,我要到哪里去
相关推荐:
以上是什麼是Python元類別? Python是元類別的介紹的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和C 在内存管理和控制方面的差异显著。1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

選擇Python還是C 取決於項目需求:1)Python適合快速開發、數據科學和腳本編寫,因其簡潔語法和豐富庫;2)C 適用於需要高性能和底層控制的場景,如係統編程和遊戲開發,因其編譯型和手動內存管理。

Python在數據科學和機器學習中的應用廣泛,主要依賴於其簡潔性和強大的庫生態系統。 1)Pandas用於數據處理和分析,2)Numpy提供高效的數值計算,3)Scikit-learn用於機器學習模型構建和優化,這些庫讓Python成為數據科學和機器學習的理想工具。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

PhpStorm Mac 版本
最新(2018.2.1 )專業的PHP整合開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中