本篇文章帶給大家的內容是關於Python中並發future模組的介紹(代碼) ,有一定的參考價值,有需要的朋友可以參考一下,希望對你有所幫助。
concurrent.futures模組
此模組主要特色在於ThreadPoolExecutor 和ProcessPoolExecutor 類,這兩個類別都繼承自concurrent.futures._base.Executor類,它們實現的介面能分別在不同的執行緒或行程中執行可呼叫的對象,它們都在內部維護一個工作執行緒或進程池。
ThreadPoolExecutor 和 ProcessPoolExecutor 類別是高階類,大部分情況下只要學會使用即可,無需關注其實作細節。
#ProcessPoolExecutor 類別>class ThreadPoolExecutor(concurrent.futures._base.Executor) >| This is an abstract base class for concrete asynchronous executors. >| Method resolution order: >| ThreadPoolExecutor | concurrent.futures._base.Executor | builtins.object | | Methods defined here: | | init(self, max_workers=None, thread_name_prefix='') | Initializes a new ThreadPoolExecutor instance. | | Args: | max_workers: The maximum number of threads that can be used to | execute the given calls. | thread_name_prefix: An optional name prefix to give our threads. | | shutdown(self, wait=True) | Clean-up the resources associated with the Executor. | | It is safe to call this method several times. Otherwise, no other | methods can be called after this one. | | Args: | wait: If True then shutdown will not return until all running | futures have finished executing and the resources used by the | executor have been reclaimed. | | submit(self, fn, *args, **kwargs) | Submits a callable to be executed with the given arguments. | | Schedules the callable to be executed as fn(*args, **kwargs) and returns | a Future instance representing the execution of the callable. | | Returns: | A Future representing the given call. | | ---------------------------------------------------------------------- | Methods inherited from concurrent.futures._base.Executor: | | enter(self) | | exit(self, exc_type, exc_val, exc_tb) | | map(self, fn, *iterables, timeout=None, chunksize=1) | Returns an iterator equivalent to map(fn, iter). | | Args: | fn: A callable that will take as many arguments as there are | passed iterables. | timeout: The maximum number of seconds to wait. If None, then there | is no limit on the wait time. | chunksize: The size of the chunks the iterable will be broken into | before being passed to a child process. This argument is only | used by ProcessPoolExecutor; it is ignored by | ThreadPoolExecutor. | | Returns: | An iterator equivalent to: map(func, *iterables) but the calls may | be evaluated out-of-order. | | Raises: | TimeoutError: If the entire result iterator could not be generated | before the given timeout. | Exception: If fn(*args) raises for any values.初始化可以指定一個最大進程數作為其參數max_workers 的值,該值一般無需指定,預設為目前執行機器的核心數,可以由os.cpu_count()取得;類別中含有方法:
- map()方法,與python內建方法map() 函數類似,也就是映射,參數為:
- 一個可呼叫函數fn
- 一個迭代器iterables
- 超時時長timeout
- 區塊數chuncksize 如果大於1, 迭代器會被分塊處理
- shutdown()方法,清理所有與目前執行器(executor)相關的資源
- submit() 方法,提交一個可調用物件給fn使用
- 從concurrent.futures._base.Executor繼承了__enter__() 和__exit__()方法,這表示ProcessPoolExecutor 物件可以用於with 語句。
from concurrent import futures
with futures.ProcessPoolExecutor(max_works=3) as executor:
executor.map()
ThreadPoolExecutor類別
class ThreadPoolExecutor(concurrent.futures._base.Executor) | This is an abstract base class for concrete asynchronous executors. | | Method resolution order: | ThreadPoolExecutor | concurrent.futures._base.Executor | builtins.object | | Methods defined here: | | init(self, max_workers=None, thread_name_prefix='') | Initializes a new ThreadPoolExecutor instance. | | Args: | max_workers: The maximum number of threads that can be used to | execute the given calls. | thread_name_prefix: An optional name prefix to give our threads. | | shutdown(self, wait=True) | Clean-up the resources associated with the Executor. | | It is safe to call this method several times. Otherwise, no other | methods can be called after this one. | | Args: | wait: If True then shutdown will not return until all running | futures have finished executing and the resources used by the | executor have been reclaimed. | | submit(self, fn, *args, **kwargs) | Submits a callable to be executed with the given arguments. | | Schedules the callable to be executed as fn(*args, **kwargs) and returns | a Future instance representing the execution of the callable. | | Returns: | A Future representing the given call. | | ---------------------------------------------------------------------- | Methods inherited from concurrent.futures._base.Executor: | | enter(self) | | exit(self, exc_type, exc_val, exc_tb) | | map(self, fn, *iterables, timeout=None, chunksize=1) | Returns an iterator equivalent to map(fn, iter). | | Args: | fn: A callable that will take as many arguments as there are | passed iterables. | timeout: The maximum number of seconds to wait. If None, then there | is no limit on the wait time. | chunksize: The size of the chunks the iterable will be broken into | before being passed to a child process. This argument is only | used by ProcessPoolExecutor; it is ignored by | ThreadPoolExecutor. | | Returns: | An iterator equivalent to: map(func, *iterables) but the calls may | be evaluated out-of-order. | | Raises: | TimeoutError: If the entire result iterator could not be generated | before the given timeout. | Exception: If fn(*args) raises for any values.與ProcessPoolExecutor 類別十分相似,只不過一個是處理進程,一個是處理線程,可依實際需求選擇。 範例
from time import sleep, strftime from concurrent import futures def display(*args): print(strftime('[%H:%M:%S]'), end="") print(*args) def loiter(n): msg = '{}loiter({}): doing nothing for {}s' display(msg.format('\t'*n, n, n)) sleep(n) msg = '{}loiter({}): done.' display(msg.format('\t'*n, n)) return n*10 def main(): display('Script starting') executor = futures.ThreadPoolExecutor(max_workers=3) results = executor.map(loiter, range(5)) display('results:', results) display('Waiting for inpidual results:') for i, result in enumerate(results): display('result {} : {}'.format(i, result)) if __name__ == '__main__': main()執行結果:
[20:32:12]Script starting [20:32:12]loiter(0): doing nothing for 0s [20:32:12]loiter(0): done. [20:32:12] loiter(1): doing nothing for 1s [20:32:12] loiter(2): doing nothing for 2s [20:32:12]results: <generator>.result_iterator at 0x00000246DB21BC50> [20:32:12]Waiting for inpidual results: [20:32:12] loiter(3): doing nothing for 3s [20:32:12]result 0 : 0 [20:32:13] loiter(1): done. [20:32:13] loiter(4): doing nothing for 4s [20:32:13]result 1 : 10 [20:32:14] loiter(2): done. [20:32:14]result 2 : 20 [20:32:15] loiter(3): done. [20:32:15]result 3 : 30 [20:32:17] loiter(4): done. [20:32:17]result 4 : 40</generator>不同機器運行結果可能不同。 範例中設定max_workers=3,所以程式碼一開始運行,則有三個物件(0,1,2)被執行loiter() 運算; 三秒後,物件0運行結束,得到結果result 0之後,物件3才開始被執行,同理,物件4的執行時間在物件1執行結果result 1列印結束之後。 相關推薦:####
以上是Python中並發future模組的介紹(程式碼)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

useanArray.ArarayoveralistinpythonwhendeAlingwithHomoGeneData,performance-Caliticalcode,orinterfacingwithccode.1)同質性data:arraysSaveMemorywithTypedElements.2)績效code-performance-calitialcode-calliginal-clitical-clitical-calligation-Critical-Code:Arraysofferferbetterperbetterperperformanceformanceformancefornallancefornalumericalical.3)

不,notalllistoperationsareSupportedByArrays,andviceversa.1)arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,wheremactsperformance.2)listssdonotguaranteeconecontanttanttanttanttanttanttanttanttanttimecomplecomecomplecomecomecomecomecomecomplecomectacccesslectaccesslecrectaccesslerikearraysodo。

toAccesselementsInapythonlist,useIndIndexing,負索引,切片,口頭化。 1)indexingStartSat0.2)否定indexingAccessesessessessesfomtheend.3)slicingextractsportions.4)iterationerationUsistorationUsisturessoreTionsforloopsoreNumeratorseforeporloopsorenumerate.alwaysCheckListListListListlentePtotoVoidToavoIndexIndexIndexIndexIndexIndExerror。

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

SublimeText3漢化版
中文版,非常好用

WebStorm Mac版
好用的JavaScript開發工具