介紹語言的基本知識和標準函式庫
一些語言,如Smalltalk和Python等,在程式執行時檢查資料型別;與之相反,C 是一種靜態資料類型語言,它的類型檢查發生在編譯時。
- 內建類型(built-in type):由語言定義的類型,如int。
- 類別類型(class type):程式設計師自訂的資料類型。
資料類型告訴我嘛資料的意義以及我們能在資料上執行的操作。
術語chunk(區塊):用於處理存儲,使存儲具有結構的最基本方法。塊的位數一般是2的冪,這樣可以一次處理8、16、32、64或128位元。注意區分block。
可尋址的最小記憶體區塊稱為“位元組(byte)”;儲存的基本單元稱為“字(word)”,通常由幾個位元組組成。
- 算數類型(arithmetic type):整數、浮點數、單一字元、布林值
- 整數(integral type):表示整數、字元和布林值的算術型別合併為整數
#
- 字元型:char(單一機器位元組:byte)和wchar_t(寬字元型,用於擴充字元集,例如漢字和日文)
- short:半機器字長;int:一個機器字長;long:兩個機器字長。 ps:在32位元機器中int和long的字長通常是相等的。最小儲存空間分別為16位元、16位元和32位元
- 整數型的賦值:賦值時,取該值對此型別取值數目求模後的值。
- 浮點型:單精確度、雙精確度、擴展精準度(long double)
- 一般而言,float佔1個字(32位元),double佔2個字(64位元),long double以3或4個字(96或128位元)來表示。
- 通常選用double,float的精確度損失大(double能至少保證10位元有效數字,float只能保證6位元),而double的計算代價相對於float可以忽略。
- 16位signed最大數32767,unsigned最大數65535。
- 空白型別(void):通常用作無回傳值函數的回傳型別
unsigned char c = -1; //假设char占8比特,c的值为255signed char c2 = 256; //假设char占8比特,c2的值是未定义的
當我們賦給無符號類型一個超出它表示範圍的值時,結果是初始值對無符號類型表示數值總數取模後的餘數。
當我們賦給帶符號類型一個超出它表示範圍的值時,結果是未定義的(undefined)。此時,程式可能繼續工作、可能崩潰,也可能產生垃圾資料。
不可混用帶符號型別和無符號型別。如果表達式裡這兩種類型都有,則帶符號數會自動轉換為無符號數。
#稱之為字面值是因為只能用它的值稱呼他,稱之為常量是因為它的值不能夠修改。
只有內建類型存在字面值,沒有類別類型的字面值,因此也沒有標準函式庫類型的字面值。
使用十進位、八進位(0開頭)或十六進位(0x或0X開頭)
//20的三种表示:20 /*十进制*/024 /*八进制*/0x14 /*十六进制*/
整數字面值:字面值常數類型預設為int或long型。透過加上字尾能夠強制將字面值轉換為long、unsinged、unsigned long,後綴為L、U、UL或LU(小寫亦可。不提倡使用l,易與1混淆)。
浮點字面值:十進位或科學計數法來表示(用e或E)。預設double類型,加F或f表示單精度,加L或l表示擴展精度。
布林字面值:true和false。
字元字面值:
########### ###雙引號######\”############
#名稱 ##書寫換行符號 \n 水平製表符 \t 縱向製表符 \v #退格符號 回車符號##\b 問題編號 \r \?
\ooo:这里的ooo表示三个八进制数字,这三个数字表示字符的数字值。如’\0’通常表示“空字符(null character)”。
也可以用十六进制转义字符来定义:\xddd。一个反斜线、一个x和一个或多个十六进制数组成。
通用转义字符:
可打印字符通常用一对单引号定义,如‘a’;在前面加L就能得到wchar_t类型的宽字符字面值,如L‘a’。
不可打印字符和特殊字符都用转义字符书写,转义字符以反斜线开始。
字符串字面值:
双引号括起来的0个或多个字符。
为了兼容C语言,C++所有的字符串字面值都由编译器自动在末尾添加一个空字符(‘\0’),因此,其实际长度要比它的内容多1。
宽字符字面值:在字符串前面加L,如L“asdff”。
多行字面值:两个字符串字面值位置紧邻且仅由空格、缩进和换行符分割,则它们实际上是一个整体。
不依赖未定义行为和机器相关行为,否则这样的程序时不可移植的(nonportable)。
指针字面值:nullptr
变量提供了程序可操作的有名字的存储区
- 左值和右值
- 左值(lvalue):变量的地址,或者是一个代表“ 对象在内存中的位置”的表达式。
- 右值(rvalue):变量的值
变量名出现在赋值运算符的左边,就是一个左值;而出现在赋值运算符右边的变量名或字面常量就是一个右值。 如: val1=val2/8 这里的val1是个左值,而val2和8都是右值。
- 对象:内存中具有类型的区域
- 变量名:即变量的标识符(identifier)。
1. 由字母、数字和下划线组成.
2. 变量名必须以字母或下划线开头,并且区分大小写。(函数体外的变量名不能以下划线开头)
3. C++关键字不能用做标识符
4. 不能包含两个连续的下划线
5. 不能以下划线开头后紧跟一个大写字母
定义对象(如:int a;)
每个定义都是以类型说明符(type specifier)开始的(如:int)
int ival(1024);//direct-initialization,直接初始化int ival = 1024;//copy-initialization,复制初始化//注:直接初始化语法更灵活,且效率更高。
列表初始化(list initialization)(C++11新特性)
int ival{1024};int ival = {1024};long double ld = 3.1415926536;int a{ld}, b = {ld}; //错误:转换未执行,因为存在丢失信息的风险int c(ld), d = ld; //正确:转换执行,且丢失部分值
初始化&赋值:初始化不是赋值。
默认初始化(default initialized):如果内置类型的变量未被显示初始化,它的值由定义的位置决定。定义于任何函数体之外的变量被初始化为0,内部的将不被初始化。
建议初始化每个内置型变量,以保证程序安全。
初始化
变量的声明
extern int i; //声明i而非定义iint j; //定义j
变量只能被定义一次,但能被多次声明。
如果要在多个文件中使用同一个变量,就必须将声明和定义分离。变量的定义必须出现且只能处在在一个文件中,而其他用到该变量的文件必须对其进行声明,却决不能重复定义。
如果想声明一个变量而非定义它,在变量名前加关键字extern,且不要显示地初始化变量:
变量名的作用域(scope):以花括号分隔
全局作用域(global scope)
块作用域(block scope)
引用(reference),此处指左值引用(lvalue reference)。
int ival = 1024;int &refVal = ival; //refVal指向ival(是ival的另一个名字)int &refVal; //报错,引用必须被初始化
引用不是对象,只是已经存在的对象的另一个名字。程序将引用和他的初始值绑定(bind)在一起,而不是直接将初始值拷贝给引用。
指针(pointer)
int i = 42; int &r = i; //&紧随类名出现,因此是声明的一部分,r是一个引用int *p; //*紧随类名出现,因此是声明的一部分,p是一个指针p = &i; //&出现在表达式中,是一个取地址符*p = i; //*出现在表达式中,是一个解引用符int &r2 = *p;
指针是对象,允许赋值和拷贝,且在指针的生命周期内它可以先后指向不同的几个对象。
指针无需在定义时赋值。
指针类型和它所指向的对象的类型必须匹配。
int *ip1, *ip2;int val = 4;int *p = &val;
如果指针指向了一个对象,则允许用解引用符(操作符*)来访问该对象:
int ival - 42;int *p = &ival;cout << *p; //由符号*得到指针p所指的对象,输出42*p = 0; //由符号*得到指针p所指的对象,即可经由p为变量ival赋值cout << *p; //输出0
符号的含义由上下文决定
空指针
int *p1 = nullptr;int *p2 = 0;int *p3 = NULL; //需要首先#include cstdlib
建议初始化所有指针
面对一条比较复杂的指针或引用的声明语句时,从右向左阅读有助于弄清它的真实含义。
定义常量。
- 指针和const
- 顶层const(top-level const):表示指针本身是个常量
- 底层const(low-level condt):表示指针所指的对象是个常量
指向常量的指针(pointer to const)
const double pi = 3.14;double *ptr = π //错误!const double *cptr = π //正确*cptr = 42; //错误!cptr指向常量,不能向常量赋值double dval = 3.14; cptr = &dval; //正确,但不能通过cptr改变dval的值,因为cptr以为自己指向的是常量常量指针(const pointer)
int errNum = 0;int *const curErr = &errBum; //curErr将一直指向errNumconst double pi = 3.14;const double *const pip = π //pip是一个指向常量对象的常量指针
constexpr和常量表达式
C++11新标准:将变量声明为constexpr类型以便由编译器来验证变量的值是否是一个常量表达式。(用const,有些常量的具体值直到运行时才能获取)
在constexpr声明中如果定义了一个指针,限定符仅对指针有效,与指针所知的对象无关。也就是说它把所定义的对象置为顶层const。
const int *p = nullptr; //p是一个指向常量的普通指针constexpr int *q= nullptr; //q是一个常量指针constexpr int i = 42;constexpr const *p = &i;
类型别名(type alias)
typedef <br>typedef double wages; //wages是double的同义词 <br>typedef wages base, *p; //base是double的同义词,p是double*的同义词 <br>
别名声明(alias declaration) <br>using S1 = Sales_item; //S1是Sales_item的同义词 <br>
auto类型说明符
让编译器替代我们去分析表达式所属的类型。
auto一般会忽略顶层const <br>const int i =1; //i是整型常量 <br>auto b = i; //b是一个整数 <br>const auto c = i; //c是整型常量 <br>
decltype类型指示符
const int ci = 0, &cj = ci; decltype(ci) x = 0; //x的类型是const intdecltype(cj) y = x; //y的类型是const int&,y绑定到变量xdecltype(cj) z; //错误:z是一个引用,必须初始化
int i = 42, *p = &i, &r = i; decltype(r + 0) b; //正确:加法的结果是int,因此b是一个未初始化的intdecltype(*p) c; //错误:c是int&,必须初始化
decltype((v))(注意双层括号)的结果永远是引用。
decltype处理顶层const和引用的方式与auto有些许不同。如果decltype使用的表达式是一个变量,则decltype返回该变量的类型(包括顶层const和引用在内)。
头文件通常包含哪些只能被定义一次的实体,如类、const和constexpr变量等。
预处理器(preprocessor):如#include,当预处理器看到#include标记时就会用指定的头文件内容替代#include。
头文件保护符(header guard):有效防止重复包含发生
一般把预处理变量的名字全部大写 <br>#ifdef //当且仅当变量已定义时为真 <br>#ifndef //当且仅当变量未定义是为真 <br>#define //把一个名字设定为预处理变量 <br>#endif //与#ifdef和#ifndef匹配,执行它们的后续操作知道#endif指令止 <br>
#ifndef SALES_DATA_H#define SALES_DATA_H#include <string>struct Sales_data { ... //此处省略 };#endif
参考:C++Primer第五版
介绍语言的基本知识和标准库
相关文章:
以上是第二章C++:變數和基本類型的詳細內容。更多資訊請關注PHP中文網其他相關文章!