這篇文章主要介紹了關於PHP的多任務協程處理,有著一定的參考價值,現在分享給大家,有需要的朋友可以參考一下
那麼,開始吧!
這就是本文我們要討論的問題。不過我們會從更簡單更熟悉的範例開始。
一切從陣列開始
我們可以透過簡單的遍歷來使用陣列:
$array = ["foo", "bar", "baz"]; foreach ($array as $key => $value) { print "item: " . $key . "|" . $value . "\n"; } for ($i = 0; $i <p>這是我們日常編碼所依賴的基本實作。可以透過遍歷數組來取得每個元素的鍵名和鍵值。 </p><p>當然,如果我們希望能夠知道何時可以使用陣列。 PHP 提供了一個方便的內建函數:</p><pre class="brush:php;toolbar:false">print is_array($array) ? "yes" : "no"; // yes
類別數組處理
有時,我們需要對一些資料使用相同的方式進行遍歷處理,但它們並非數組類型。例如對 DOMDocument 類別進行處理:
$document = new DOMDocument(); $document->loadXML("<p></p>"); $elements = $document->getElementsByTagName("p"); print_r($elements); // DOMNodeList Object ( [length] => 1 )
這顯然不是一個數組,但它有一個 length 屬性。我們能像遍歷數組一樣,對其進行遍歷麼?我們可以判斷它是否實作了下面這個特殊的介面:
print ($elements instanceof Traversable) ? "yes" : "no"; // yes
這真的太有用了。它不會導致我們在遍歷非可遍歷資料時觸發錯誤。我們僅需在處理前進行檢測即可。
不過,這會引發另一個問題:我們能否讓自訂類別也擁有這個功能呢?答案是肯定的!第一個實作方法類似如下:
class MyTraversable implements Traversable { // 在这里编码... }
如果我們執行這個類,我們將看到一個錯誤訊息:
PHP Fatal error: Class MyTraversable must implement interface Traversable as part of either Iterator or IteratorAggregate
Iterator(迭代器)
我們無法直接實作Traversable,但是我們可以嘗試第二種方案:
class MyTraversable implements Iterator { // 在这里编码... }
這個介面需要我們實作5 個方法。讓我們完善我們的迭代器:
class MyTraversable implements Iterator { protected $data; protected $index = 0; public function __construct($data) { $this->data = $data; } public function current() { return $this->data[$this->index]; } public function next() { return $this->data[$this->index++]; } public function key() { return $this->index; } public function rewind() { $this->index = 0; } public function valid() { return $this->index data); } }
這邊我們需要注意幾個事項:
我們需要儲存建構器方法傳入的$data 數組,以便後續我們可以從中取得它的元素。
也需要一個內部索引(或指標)來追蹤 current 或 next 元素。
rewind() 僅重設index# 屬性,這樣current() 和next() 才能正常運作。
鍵名稱並非只能是數字型別!這裡使用數組索引是為了確保範例足夠簡單。
我們可以向下面這樣運行這段程式碼:
$iterator = new MyIterator(["foo", "bar", "baz"]); foreach ($iterator as $key => $value) { print "item: " . $key . "|" . $value . "\n"; }
這看起來需要處理太多工作,但是這是能夠像數組一樣使用foreach /for 功能的一個簡潔實作。
IteratorAggregate(聚合迭代器)
還記得第二個介面拋出的 Traversable 異常麼?下面來看一個比實作 Iterator 介面更快的實作吧:
class MyIteratorAggregate implements IteratorAggregate { protected $data; public function __construct($data) { $this->data = $data; } public function getIterator() { return new ArrayIterator($this->data); } }
這裡我們作弊了。相較於實作一個完整的 Iterator,我們透過 ArrayIterator() 裝飾。不過,這相比於透過實現完整的 Iterator 簡化了不少程式碼。
兄弟莫急!先讓我們比較一些程式碼。首先,我們在不使用生成器的情況下從檔案中讀取每一行資料:
$content = file_get_contents(__FILE__); $lines = explode("\n", $content); foreach ($lines as $i => $line) { print $i . ". " . $line . "\n"; }
這段程式碼讀取檔案自身,然後會列印出每行的行號和程式碼。那為什麼我們不使用生成器呢!
function lines($file) { $handle = fopen($file, 'r'); while (!feof($handle)) { yield trim(fgets($handle)); } fclose($handle); } foreach (lines(__FILE__) as $i => $line) { print $i . ". " . $line . "\n"; }
我知道這看起來更複雜。不錯,不過這是因為我們沒有使用 file_get_contents() 函數。一個生成器看起來就像是函數,但是它會在每次取得到 yield 關鍵字是停止運作。
產生器看起來有點像迭代器:
print_r(lines(__FILE__)); // Generator Object ( )
儘管它不是迭代器,它是一個 Generator。它的內部定義了什麼方法呢?
print_r(get_class_methods(lines(__FILE__))); // Array // ( // [0] => rewind // [1] => valid // [2] => current // [3] => key // [4] => next // [5] => send // [6] => throw // [7] => __wakeup // )
如果你讀取一個大文件,然後使用 memory_get_peak_usage(),你會注意到生成器的程式碼會使用固定的內存,無論這個文件有多大。它每次進度去一行。而是用 file_get_contents() 函數讀取整個文件,會使用更大的記憶體。這就是在迭代處理這類事物時,生成器的能帶給我們的優勢!
Send(傳送資料)
可以將資料傳送到生成器。看下面這個生成器:
<?php $generator = call_user_func(function() { yield "foo"; }); print $generator->current() . "\n"; // foo
注意这里我们如何在 call_user_func() 函数中封装生成器函数的?这里仅仅是一个简单的函数定义,然后立即调用它获取一个新的生成器实例...
我们已经见过 yield 的用法。我们可以通过扩展这个生成器来接收数据:
$generator = call_user_func(function() { $input = (yield "foo"); print "inside: " . $input . "\n"; }); print $generator->current() . "\n"; $generator->send("bar");
数据通过 yield 关键字传入和返回。首先,执行 current() 代码直到遇到 yield,返回 foo。send() 将输出传入到生成器打印输入的位置。你需要习惯这种用法。
抛出异常(Throw)
由于我们需要同这些函数进行交互,可能希望将异常推送到生成器中。这样这些函数就可以自行处理异常。
看看下面这个示例:
$multiply = function($x, $y) { yield $x * $y; }; print $multiply(5, 6)->current(); // 30
现在让我们将它封装到另一个函数中:
$calculate = function ($op, $x, $y) use ($multiply) { if ($op === 'multiply') { $generator = $multiply($x, $y); return $generator->current(); } }; print $calculate("multiply", 5, 6); // 30
这里我们通过一个普通闭包将乘法生成器封装起来。现在让我们验证无效参数:
$calculate = function ($op, $x, $y) use ($multiply) { if ($op === "multiply") { $generator = $multiply($x, $y); if (!is_numeric($x) || !is_numeric($y)) { throw new InvalidArgumentException(); } return $generator->current(); } }; print $calculate('multiply', 5, 'foo'); // PHP Fatal error...
如果我们希望能够通过生成器处理异常?我们怎样才能将异常传入生成器呢!
$multiply = function ($x, $y) { try { yield $x * $y; } catch (InvalidArgumentException $exception) { print "ERRORS!"; } }; $calculate = function ($op, $x, $y) use ($multiply) { if ($op === "multiply") { $generator = $multiply($x, $y); if (!is_numeric($x) || !is_numeric($y)) { $generator->throw(new InvalidArgumentException()); } return $generator->current(); } }; print $calculate('multiply', 5, 'foo'); // PHP Fatal error...
棒呆了!我们不仅可以像迭代器一样使用生成器。还可以通过它们发送数据并抛出异常。它们是可中断和可恢复的函数。有些语言把这些函数叫做……
我们可以使用协程(coroutines)来构建异步代码。让我们来创建一个简单的任务调度程序。首先我们需要一个 Task 类:
class Task { protected $generator; public function __construct(Generator $generator) { $this->generator = $generator; } public function run() { $this->generator->next(); } public function finished() { return !$this->generator->valid(); } }
Task 是普通生成器的装饰器。我们将生成器赋值给它的成员变量以供后续使用,然后实现一个简单的 run() 和 finished() 方法。run() 方法用于执行任务,finished() 方法用于让调度程序知道何时终止运行。
然后我们需要一个 Scheduler 类:
class Scheduler { protected $queue; public function __construct() { $this->queue = new SplQueue(); } public function enqueue(Task $task) { $this->queue->enqueue($task); } pulic function run() { while (!$this->queue->isEmpty()) { $task = $this->queue->dequeue(); $task->run(); if (!$task->finished()) { $this->queue->enqueue($task); } } } }
Scheduler 用于维护一个待执行的任务队列。run() 会弹出队列中的所有任务并执行它,直到运行完整个队列任务。如果某个任务没有执行完毕,当这个任务本次运行完成后,我们将再次入列。
SplQueue 对于这个示例来讲再合适不过了。它是一种 FIFO(先进先出:fist in first out) 数据结构,能够确保每个任务都能够获取足够的处理时间。
我们可以像这样运行这段代码:
$scheduler = new Scheduler(); $task1 = new Task(call_user_func(function() { for ($i = 0; $i enqueue($task1); $scheduler->enqueue($task2); $scheduler->run();
运行时,我们将看到如下执行结果:
task 1: 0 task 1: 1 task 2: 0 task 2: 1 task 1: 2 task 2: 2 task 2: 3 task 2: 4 task 2: 5
这几乎就是我们想要的执行结果。不过有个问题发生在首次运行每个任务时,它们都执行了两次。我们可以对 Task 类稍作修改来修复这个问题:
class Task { protected $generator; protected $run = false; public function __construct(Generator $generator) { $this->generator = $generator; } public function run() { if ($this->run) { $this->generator->next(); } else { $this->generator->current(); } $this->run = true; } public function finished() { return !$this->generator->valid(); } }
我们需要调整首次 run() 方法调用,从生成器当前有效的指针读取运行。后续调用可以从下一个指针读取运行...
有些人基于这个思路实现了一些超赞的类库。我们来看看其中的两个...
RecoilPHP
RecoilPHP 是一套基于协程的类库,它最令人印象深刻的是用于 ReactPHP 内核。可以将事件循环在 RecoilPHP 和 RecoilPHP 之间进行交换,而你的程序无需架构上的调整。
我们来看一下 ReactPHP 异步 DNS 解决方案:
function resolve($domain, $resolver) { $resolver ->resolve($domain) ->then(function ($ip) use ($domain) { print "domain: " . $domain . "\n"; print "ip: " . $ip . "\n"; }, function ($error) { print $error . "\n"; }) } function run() { $loop = React\EventLoop\Factory::create(); $factory = new React\Dns\Resolver\Factory(); $resolver = $factory->create("8.8.8.8", $loop); resolve("silverstripe.org", $resolver); resolve("wordpress.org", $resolver); resolve("wardrobecms.com", $resolver); resolve("pagekit.com", $resolver); $loop->run(); } run();
resolve() 接收域名和 DNS 解析器,并使用 ReactPHP 执行标准的 DNS 查找。不用太过纠结与 resolve() 函数内部。重要的是这个函数不是生成器,而是一个函数!
run() 创建一个 ReactPHP 事件循环,DNS 解析器(这里是个工厂实例)解析若干域名。同样,这个也不是一个生成器。
想知道 RecoilPHP 到底有何不同?还希望掌握更多细节!
use Recoil\Recoil; function resolve($domain, $resolver) { try { $ip = (yield $resolver->resolve($domain)); print "domain: " . $domain . "\n"; print "ip: " . $ip . "\n"; } catch (Exception $exception) { print $exception->getMessage() . "\n"; } } function run() { $loop = (yield Recoil::eventLoop()); $factory = new React\Dns\Resolver\Factory(); $resolver = $factory->create("8.8.8.8", $loop); yield [ resolve("silverstripe.org", $resolver), resolve("wordpress.org", $resolver), resolve("wardrobecms.com", $resolver), resolve("pagekit.com", $resolver), ]; } Recoil::run("run");
通过将它集成到 ReactPHP 来完成一些令人称奇的工作。每次运行 resolve() 时,RecoilPHP 会管理由 $resoler->resolve() 返回的 promise 对象,然后将数据发送给生成器。此时我们就像在编写同步代码一样。与我们在其他一步模型中使用回调代码不同,这里只有一个指令列表。
RecoilPHP 知道它应该管理一个有执行 run() 函数时返回的 yield 数组。RoceilPHP 还支持基于协程的数据库(PDO)和日志库。
IcicleIO
IcicleIO 为了一全新的方案实现 ReactPHP 一样的目标,而仅仅使用协程功能。相比 ReactPHP 它仅包含极少的组件。但是,核心的异步流、服务器、Socket、事件循环特性一个不落。
让我们看一个 socket 服务器示例:
use Icicle\Coroutine\Coroutine; use Icicle\Loop\Loop; use Icicle\Socket\Client\ClientInterface; use Icicle\Socket\Server\ServerInterface; use Icicle\Socket\Server\ServerFactory; $factory = new ServerFactory(); $coroutine = Coroutine::call(function (ServerInterface $server) { $clients = new SplObjectStorage(); $handler = Coroutine::async( function (ClientInterface $client) use (&$clients) { $clients->attach($client); $host = $client->getRemoteAddress(); $port = $client->getRemotePort(); $name = $host . ":" . $port; try { foreach ($clients as $stream) { if ($client !== $stream) { $stream->write($name . "connected.\n"); } } yield $client->write("Welcome " . $name . "!\n"); while ($client->isReadable()) { $data = trim(yield $client->read()); if ("/exit" === $data) { yield $client->end("Goodbye!\n"); } else { $message = $name . ":" . $data . "\n"; foreach ($clients as $stream) { if ($client !== $stream) { $stream->write($message); } } } } } catch (Exception $exception) { $client->close($exception); } finally { $clients->detach($client); foreach ($clients as $stream) { $stream->write($name . "disconnected.\n"); } } } ); while ($server->isOpen()) { $handler(yield $server->accept()); } }, $factory->create("127.0.0.1", 6000)); Loop::run();
据我所知,这段代码所做的事情如下:
在 127.0.0.1 和 6000 端口创建一个服务器实例,然后将其传入外部生成器.
外部生成器运行,同时服务器等待新连接。当服务器接收一个连接它将其传入内部生成器。
内部生成器写入消息到 socket。当 socket 可读时运行。
每次 socket 向服务器发送消息时,内部生成器检测消息是否是退出标识。如果是,通知其他 socket。否则,其它 socket 发送这个相同的消息。
打开命令行终端输入 nc localhost 6000 查看执行结果!
该示例使用 SplObjectStorage 跟踪 socket 连接。这样我们就可以向所有 socket 发送消息。
这个话题可以包含很多内容。希望您能看到生成器是如何创建的,以及它们如何帮助编写迭代程序和异步代码。
如果你有问题,可以随时问我。
相关推荐:
以上是PHP的多工協程處理的分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!

使用數據庫存儲會話的主要優勢包括持久性、可擴展性和安全性。 1.持久性:即使服務器重啟,會話數據也能保持不變。 2.可擴展性:適用於分佈式系統,確保會話數據在多服務器間同步。 3.安全性:數據庫提供加密存儲,保護敏感信息。

在PHP中實現自定義會話處理可以通過實現SessionHandlerInterface接口來完成。具體步驟包括:1)創建實現SessionHandlerInterface的類,如CustomSessionHandler;2)重寫接口中的方法(如open,close,read,write,destroy,gc)來定義會話數據的生命週期和存儲方式;3)在PHP腳本中註冊自定義會話處理器並啟動會話。這樣可以將數據存儲在MySQL、Redis等介質中,提升性能、安全性和可擴展性。

SessionID是網絡應用程序中用來跟踪用戶會話狀態的機制。 1.它是一個隨機生成的字符串,用於在用戶與服務器之間的多次交互中保持用戶的身份信息。 2.服務器生成並通過cookie或URL參數發送給客戶端,幫助在用戶的多次請求中識別和關聯這些請求。 3.生成通常使用隨機算法保證唯一性和不可預測性。 4.在實際開發中,可以使用內存數據庫如Redis來存儲session數據,提升性能和安全性。

在無狀態環境如API中管理會話可以通過使用JWT或cookies來實現。 1.JWT適合無狀態和可擴展性,但大數據時體積大。 2.Cookies更傳統且易實現,但需謹慎配置以確保安全性。

要保護應用免受與會話相關的XSS攻擊,需採取以下措施:1.設置HttpOnly和Secure標誌保護會話cookie。 2.對所有用戶輸入進行輸出編碼。 3.實施內容安全策略(CSP)限制腳本來源。通過這些策略,可以有效防護會話相關的XSS攻擊,確保用戶數據安全。

优化PHP会话性能的方法包括:1.延迟会话启动,2.使用数据库存储会话,3.压缩会话数据,4.管理会话生命周期,5.实现会话共享。这些策略能显著提升应用在高并发环境下的效率。

theSession.gc_maxlifetimesettinginphpdeterminesthelifespanofsessiondata,setInSeconds.1)它'sconfiguredinphp.iniorviaini_set().2)abalanceisesneededeededeedeedeededto toavoidperformance andunununununexpectedLogOgouts.3)

在PHP中,可以使用session_name()函數配置會話名稱。具體步驟如下:1.使用session_name()函數設置會話名稱,例如session_name("my_session")。 2.在設置會話名稱後,調用session_start()啟動會話。配置會話名稱可以避免多應用間的會話數據衝突,並增強安全性,但需注意會話名稱的唯一性、安全性、長度和設置時機。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SublimeText3漢化版
中文版,非常好用

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

SublimeText3 Linux新版
SublimeText3 Linux最新版

WebStorm Mac版
好用的JavaScript開發工具

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),