本篇文章主要介紹了PHP影像辨識技術原理與實現,這個平常做的密碼驗證有異曲同工之處,有需要的可以了解一下。
其實圖像辨識技術與我們平時做的密碼驗證之類的沒有什麼區別,都是事先把要校驗的資料入庫,然後使用時將錄入(識別)的數據與庫中的資料做對比,只不過影像辨識技術有一部分的容錯性,而我們平時的密碼驗證是要100%匹配。
前幾天,有朋友談到做遊戲點擊抽獎,識別圖片中的文字,當時立刻想到的就是js控製或flash做遮罩層,感覺這種辦法是最方便快捷效果好,而且節省伺服器資源,但那邊提的要求竟然是透過php辨識影像中的文字。
趕巧那兩天的新聞有:1、馬雲人臉辨識支付;2、12306使用新的驗證碼,說什麼現在國內的搶票軟體都不能用了,發布不到一天就被破解。然後又很湊巧的那天早上看了一篇Java的圖像辨識技術文章。於是就琢磨著看一下PHP的影像辨識技術。
其實所謂的圖像識別,已經不是什麼新技術了,起碼我找到的資料都是很早之前的了。只不過我一直沒牽涉到這方面的工作,就一直沒看過。
先說下這次實驗的需求:有一張圖片,裡面三個位置分別有三個數字,要求取出對應位置的數字的數值。 (眼尖的同學可能會看出下面的程式碼是我拿的別人的,沒錯,的確是我直接copy別人並刪減的,畢竟我對這些也是淺嚐輒止,最後會貼出原作者的初始代碼)
class gjPhone { protected $imgPath; // 图片路径 protected $imgSize; // 图片大小 protected $hecData; // 分离后数组 protected $horData; // 横向整理的数据 protected $verData; // 纵向整理的数据 function __construct ($path) { $this->imgPath = $path; } public function getHec () { $size = getimagesize($this->imgPath); $res = imagecreatefrompng($this->imgPath); for ($i = 0; $i < $size[1]; ++ $i) { for ($j = 0; $j < $size[0]; ++ $j) { $rgb = imagecolorat($res, $j, $i); $rgbarray = imagecolorsforindex($res, $rgb); if ($rgbarray['red'] < 125 || $rgbarray['green'] < 125 || $rgbarray['blue'] < 125) { $data[$i][$j] = 1; } else { $data[$i][$j] = 0; } } } $this->imgSize = $size; $this->hecData = $data; } public function magHorData () { $data = $this->hecData; $size = $this->imgSize; $z = 0; for ($i = 0; $i < $size[1]; ++ $i) { if (in_array('1', $data[$i])) { $z ++; for ($j = 0; $j < $size[0]; ++ $j) { if ($data[$i][$j] == '1') { $newdata[$z][$j] = 1; } else { $newdata[$z][$j] = 0; } } } } return $this->horData = $newdata; } public function showPhone ($ndatas) { error_reporting(0); $phone = null; $d = 0; foreach ($ndatas as $key => $val) { if (in_array(1, $val)) { foreach ($val as $k => $v) { $ndArr[$d] .= $v; } } if (! in_array(1, $val)) { $d ++; } } foreach ($ndArr as $key01 => $val01) { $phone .= $this->initData($val01); } return $phone; } /** * 初始数据 */ public function initData ($numStr) { $result = null; $data = array( '1' => '00000000111000000000000001110000000001001000100000000010100011000000000011000110000000000110000100000000010110011000000', '5' => '00000000001000000000000000010000000000100100100000000000101001110000000000100000110000000011000000100000001101000010000', '10' => '00000011100011100000000011001100100100100010010001000110000100100010001100001001000100011000010010001001001001100010100' ); foreach ($data as $key => $val) { similar_text($numStr, $val, $pre); if ($pre > 95) { // 相似度95%以上 $result = $key; break; } } return $result; } } $imgurl = 'jd.png'; list ($width, $heght, $type, $attr) = getimagesize($imgurl); $new_w = 17; $new_h = 11; $thisimage = imagecreatetruecolor($new_w, $new_h); // $new_w, $new_h 为裁剪后的图片宽高 $background = imagecolorallocate($thisimage, 255, 255, 255); imagefilledrectangle($thisimage, 0, 0, $new_w, $new_h, $background); $oldimg = imagecreatefrompng($imgurl); // 载入原始图片 // 首先定位要取图的位置(这里可以通过前端js或者其他手段定位,由于我这是测试,所以就ps定位并写死了) $weizhi = array( '1' => 165, '5' => 308, '10' => 456 ); foreach ($weizhi as $wwzz) { $src_y = 108; imagecopy($thisimage, $oldimg, 0, 0, $wwzz, $src_y, $new_w, $new_h); // $src_y,$new_w为原图中裁剪区域的左上角坐标拷贝图像的一部分将src_im图像中坐标从src_x,src_y开始,宽度为src_w,高度为src_h的一部分拷贝到dst_im图像中坐标为dst_x和dst_y的位置上。 $tem_png = 'tem_1.png'; imagepng($thisimage, __DIR__ . '/' . $tem_png); // 通过定位从原图中copy出想要识别的位置并生成新的缓存图,用以后面的图像识别类使用。 $gjPhone = new gjPhone($tem_png); // 实例化类 $gjPhone->getHec(); // 进行图像像素分离 $horData = $gjPhone->magHorData(); // 将分离出是数据转成01表示的图像、这里可以根据自己喜好定 $phone = $gjPhone->showPhone($horData); // 将转换好的01表示的数据与库中的数据进行匹配,匹配度95以上就算成功,库这里由于是做测试就直接写了数组 echo '| ' . $phone . ' | '; }
#如此看來,其實12306驗證碼被破解也算是有情可原了,也沒必要那麼的口誅筆伐了罷。只要不斷的抓驗證碼圖片並轉成自己程式可讀的資料存入庫裡,然後驗證的時候進行配對就可以了。那麼阿里的人臉辨識支付原理也算是理解了,只不過他們做的可能會很精細。
前端時間有看到阿里雲的一個驗證碼形式,剛開始感覺可能會好點,現在看來,只要有心,其實也是可以破解的啊。
好了,下面是原著程式碼。
/** * 电话号码识别. * @author by zsc for 2010.03.24 */ class gjPhone { protected $imgPath; // 图片路径 protected $imgSize; // 图片大小 protected $hecData; // 分离后数组 protected $horData; // 横向整理的数据 protected $verData; // 纵向整理的数据 function __construct ($path) { $this->imgPath = $path; } /** * 颜色分离转换... * * @param unknown_type $path * @return unknown */ public function getHec () { $size = getimagesize($this->imgPath); $res = imagecreatefrompng($this->imgPath); for ($i = 0; $i < $size[1]; ++ $i) { for ($j = 0; $j < $size[0]; ++ $j) { $rgb = imagecolorat($res, $j, $i); $rgbarray = imagecolorsforindex($res, $rgb); if ($rgbarray['red'] < 125 || $rgbarray['green'] < 125 || $rgbarray['blue'] < 125) { $data[$i][$j] = 1; } else { $data[$i][$j] = 0; } } } $this->imgSize = $size; $this->hecData = $data; } /** * 颜色分离后的数据横向整理... * * @return unknown */ public function magHorData () { $data = $this->hecData; $size = $this->imgSize; $z = 0; for ($i = 0; $i < $size[1]; ++ $i) { if (in_array('1', $data[$i])) { $z ++; for ($j = 0; $j < $size[0]; ++ $j) { if ($data[$i][$j] == '1') { $newdata[$z][$j] = 1; } else { $newdata[$z][$j] = 0; } } } } return $this->horData = $newdata; } /** * 整理纵向数据... * * @return unknown */ public function magVerData ($newdata) { for ($i = 0; $i < 132; ++ $i) { for ($j = 1; $j < 13; ++ $j) { $ndata[$i][$j] = $newdata[$j][$i]; } } $sum = count($ndata); $c = 0; for ($a = 0; $a < $sum; $a ++) { $value = $ndata[$a]; if (in_array(1, $value)) { $ndatas[$c] = $value; $c ++; } elseif (is_array($ndatas)) { $b = $c - 1; if (in_array(1, $ndatas[$b])) { $ndatas[$c] = $value; $c ++; } } } return $this->verData = $ndatas; } /** * 显示电话号码... * * @return unknown */ public function showPhone ($ndatas) { $phone = null; $d = 0; foreach ($ndatas as $key => $val) { if (in_array(1, $val)) { foreach ($val as $k => $v) { $ndArr[$d] .= $v; } } if (! in_array(1, $val)) { $d ++; } } foreach ($ndArr as $key01 => $val01) { $phone .= $this->initData($val01); } return $phone; } /** * 分离显示... * * @param unknown_type $dataArr */ function drawWH ($dataArr) { if (is_array($dataArr)) { foreach ($dataArr as $key => $val) { foreach ($val as $k => $v) { if ($v == 0) { $c .= "<font color='#FFFFFF'>" . $v . "</font>"; } else { $c .= $v; } } $c .= "<br/>"; } } echo $c; } /** * 初始数据... * * @param unknown_type $numStr * @return unknown */ public function initData ($numStr) { $result = null; $data = array( 0 => '000011111000001111111110011000000011110000000001110000000001110000000001110000000001011000000011011100000111000111111100000001110000', 1 => '011000000000011000000000111111111111111111111111', 2 => '001000000011011000000111110000001101110000011001110000011001110000110001111001100001011111100001000110000001', 3 => '001000000010011000000011110000000001110000000001110000110001110000110001011001110011011111011111000110001100', 4 => '000000001100000000111100000001111100000011101100000111001100001100001100011000001100111111111111111111111111000000001100000000000100', 5 => '111111000001111111000001110001000001110001000001110001100001110001100001110000110011110000111111000000001100', 6 => '000011111000001111111110011000110011110001100001110001100001110001100001110001100001010001110011010000111111000000001100', 7 => '110000000000110000000111110000111111110001110000110111000000111100000000111000000000111000000000', 8 => '000100011110011111111111110011100001110001100001110001100001110001100001110011100001011111111111000100011110', 9 => '001111000000011111100001110000110001110000110001110000110001110000110001011000100001011111100111000111111110000001110000' ); foreach ($data as $key => $val) { similar_text($numStr, $val, $pre); if ($pre > 95) { // 相似度95%以上 $result = $key; break; } } return $result; } } $imgPath = "http://bj.ganji.com/tel/5463013757650d6c5e31093e563c51315b6c5c6c5237.png"; $gjPhone = new gjPhone($imgPath); // 进行颜色分离 $gjPhone->getHec(); // 画出横向数据 $horData = $gjPhone->magHorData(); echo "===============横向数据==============<br/><br/><br/>"; $gjPhone->drawWH($horData); // 画出纵向数据 $verData = $gjPhone->magVerData($horData); echo "<br/><br/><br/>===============纵向数据==============< br/><br/><br/>"; $gjPhone->drawWH($verData); // 输出电话 $phone = $gjPhone->showPhone($verData); echo "<br/><br/><br/>===============电话==============<br /><br/><br/>" . $phone;
以上就是本文的全部內容,希望對大家的學習有所幫助,更多相關內容請關注PHP中文網!
相關推薦:
######### #######PHP簡單實作單一登入############################
以上是PHP的影像辨識技術原理與實現的詳細內容。更多資訊請關注PHP中文網其他相關文章!