這篇文章主要介紹了關於pytorch visdom 處理簡單分類問題,有著一定的參考價值,現在分享給大家,有需要的朋友可以參考一下
環境
系統: win 10
顯示卡:gtx965m
cpu :i7-6700HQ
python 3.61
pytorch 0.3
import torch from torch.autograd import Variable import torch.nn.functional as F import numpy as np import visdom import time from torch import nn,optim#資料準備 ##
use_gpu = True ones = np.ones((500,2)) x1 = torch.normal(6*torch.from_numpy(ones),2) y1 = torch.zeros(500) x2 = torch.normal(6*torch.from_numpy(ones*[-1,1]),2) y2 = y1 +1 x3 = torch.normal(-6*torch.from_numpy(ones),2) y3 = y1 +2 x4 = torch.normal(6*torch.from_numpy(ones*[1,-1]),2) y4 = y1 +3 x = torch.cat((x1, x2, x3 ,x4), 0).float() y = torch.cat((y1, y2, y3, y4), ).long()
visdom視覺化準備
##先建立需要觀察的windows
viz = visdom.Visdom() colors = np.random.randint(0,255,(4,3)) #颜色随机 #线图用来观察loss 和 accuracy line = viz.line(X=np.arange(1,10,1), Y=np.arange(1,10,1)) #散点图用来观察分类变化 scatter = viz.scatter( X=x, Y=y+1, opts=dict( markercolor = colors, marksize = 5, legend=["0","1","2","3"]),) #text 窗口用来显示loss 、accuracy 、时间 text = viz.text("FOR TEST") #散点图做对比 viz.scatter( X=x, Y=y+1, opts=dict( markercolor = colors, marksize = 5, legend=["0","1","2","3"] ), )
##邏輯迴歸處理
輸入2,輸出4
logstic = nn.Sequential( nn.Linear(2,4) )
gpu還是cpu選擇:
if use_gpu: gpu_status = torch.cuda.is_available() if gpu_status: logstic = logstic.cuda() # net = net.cuda() print("###############使用gpu##############") else : print("###############使用cpu##############") else: gpu_status = False print("###############使用cpu##############")
優化器與loss函數:
#
loss_f = nn.CrossEntropyLoss() optimizer_l = optim.SGD(logstic.parameters(), lr=0.001)
訓練2000次:
#
start_time = time.time() time_point, loss_point, accuracy_point = [], [], [] for t in range(2000): if gpu_status: train_x = Variable(x).cuda() train_y = Variable(y).cuda() else: train_x = Variable(x) train_y = Variable(y) # out = net(train_x) out_l = logstic(train_x) loss = loss_f(out_l,train_y) optimizer_l.zero_grad() loss.backward() optimizer_l.step()
訓練過成觀察及視覺化:
if t % 10 == 0: prediction = torch.max(F.softmax(out_l, 1), 1)[1] pred_y = prediction.data accuracy = sum(pred_y ==train_y.data)/float(2000.0) loss_point.append(loss.data[0]) accuracy_point.append(accuracy) time_point.append(time.time()-start_time) print("[{}/{}] | accuracy : {:.3f} | loss : {:.3f} | time : {:.2f} ".format(t + 1, 2000, accuracy, loss.data[0], time.time() - start_time)) viz.line(X=np.column_stack((np.array(time_point),np.array(time_point))), Y=np.column_stack((np.array(loss_point),np.array(accuracy_point))), win=line, opts=dict(legend=["loss", "accuracy"])) #这里的数据如果用gpu跑会出错,要把数据换成cpu的数据 .cpu()即可 viz.scatter(X=train_x.cpu().data, Y=pred_y.cpu()+1, win=scatter,name="add", opts=dict(markercolor=colors,legend=["0", "1", "2", "3"])) viz.text("<h3 id="accuracy-nbsp-nbsp">accuracy : {}</h3><br><h3 align='center' style='color:pink'>" "loss : {:.4f}</h3><br><h3 id="time-nbsp-nbsp-f">time : {:.1f}</h3>" .format(accuracy,loss.data[0],time.time()-start_time),win =text)
#我的理解就是gpu在處理圖片識別大量矩陣運算等方面運算能力遠高於cpu,在處理一些輸入和輸出都很少的,還是cpu更具優勢。
###新增神經層:############net = nn.Sequential( nn.Linear(2, 10), nn.ReLU(), #激活函数 nn.Linear(10, 4) )#########新增一層10單元神經層,看看效果是否會有所提升: #########使用cpu:######### ##########使用gpu:##############比較觀察,似乎沒有什麼差別,看來處理簡單分類問題(輸入,輸出少)的問題,神經層和gpu不會對機器學習加持。 ######相關推薦:############PyTorch上搭建簡單神經網路實作迴歸與分類的範例###############詳解PyTorch批次訓練及最佳化器比較#################################
以上是pytorch + visdom 處理簡單分類問題的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3 Linux新版
SublimeText3 Linux最新版

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境

Safe Exam Browser
Safe Exam Browser是一個安全的瀏覽器環境,安全地進行線上考試。該軟體將任何電腦變成一個安全的工作站。它控制對任何實用工具的訪問,並防止學生使用未經授權的資源。