搜尋
首頁後端開發Python教學Python使用OpenCV進行標定

Python使用OpenCV進行標定

May 08, 2018 pm 04:17 PM
opencvpython

這篇文章主要介紹了關於Python使用OpenCV進行標定,有著一定的參考價值,現在分享給大家,有需要的朋友可以參考一下

本文結合OpenCV官方樣例,對官方樣例中的程式碼進行修改,使其能夠正常運行,並對自己採集的數據進行實驗和講解。

一、準備

OpenCV使用棋盤格板進行標定,如下圖所示。為了標定相機,我們需要輸入一系列三維點和它們對應的二維影像點。在黑白相間的棋盤格上,二維影像點很容易透過角點偵測找到。而對於真實世界中的三維點呢?由於我們採集中,是將相機放在一個地方,而將棋盤格定標板進行移動變換不同的位置,然後對其進行拍攝。所以我們要知道(X,Y,Z)的值。但簡單來說,我們定義棋盤格所在平面為XY平面,也就是Z=0。對於定標板來說,我們可以知道棋盤格的方塊尺寸,例如30mm,這樣我們就可以把棋盤格上的角點座標定義為(0,0,0),(30,0,0),( 60,0,0),···,這個結果的單位是mm。

3D點稱為object points,2D映像點稱為image points。

二、偵測棋盤格角點

為了找到棋盤格模板,我們使用openCV中的函數cv2.findChessboardCorners()。我們也需要告訴程式我們使用的模板是什麼規格的,例如8*8的棋盤格或5*5棋盤格等,建議使用x方向和y方向個數不相等的棋盤格模板。下面實驗中,我們使用的是10*7的棋盤格,每個方格邊長是20mm,也就是含有9*6的內部角點。這個函數如果偵測到模板,會傳回對應的角點,並傳回true。當然不一定所有的圖像都能找到所需的模板,所以我們可以使用多個圖像來定標。除了使用棋盤格,我們還可以使用圓點陣,對應的函數為cv2.findCirclesGrid()。

找到角點後,我們可以使用cv2.cornerSubPix()可以得到更為準確的角點像素座標。我們也可以使用cv2.drawChessboardCorners()將角點繪製到圖片上顯示。如下圖所示:

三、標定

透過上面的步驟,我們得到了用於標定的三維點和與其對應的圖像上的二維點對。我們使用cv2.calibrateCamera()進行標定,這個函數會傳回標定結果、相機的內參數矩陣、畸變係數、旋轉矩陣和平移向量。

四、去畸變

第三步我們已經得到了相機內參和畸變係數,在將影像去畸變之前,我們還可以使用cv.getOptimalNewCameraMatrix()優化內參數和畸變係數,透過設定自由自由比例因子alpha。當alpha設為0的時候,會傳回一個剪裁過的將去畸變後不想要的像素去掉的內參數和畸變係數;當alpha設為1的時候,將會傳回一個包含額外黑色像素點的內參數和畸變係數,並傳回一個ROI用於將其剪裁掉。

然後我們就可以使用新得到的內參數矩陣和畸變係數對影像進行去畸變了。有兩種方法進行去畸變:

(1)使用cv2.undistort()

這是一個最直接的辦法,只用直接呼叫函數就可以得到去畸變的圖像,使用上面的ROI可以對其進行剪裁。程式碼如下:

# undistort
dst = cv2.undistort(img, mtx, dist, None, newcameramtx)

# crop the image
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.png',dst)

下圖顯示將一張圖片去變形後,保留黑色像素的結果:

(2)使用remmaping

這是一個分兩步驟的方法,首先計算一個從畸變圖像到非畸變圖像的映射,然後使用這個映射關係對影像進行去畸變。
程式碼如下:

# undistort
mapx,mapy = cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5)
dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR)

# crop the image
x,y,w,h = roi
dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.png',dst)

#五、反投影誤差

透過反投影誤差,我們可以來評估結果的好壞。越接近0,表示結果越理想。透過先前計算的內參數矩陣、畸變係數、旋轉矩陣和平移向量,使用cv2.projectPoints()計算三維點到二維影像的投影,然後計算反投影得到的點與影像上偵測到的點的誤差,最後計算一個對於所有標定影像的平均誤差,這個值就是反投影誤差。

程式碼

所有步驟的程式碼如下所示:

#coding:utf-8
import cv2
import numpy as np
import glob

# 找棋盘格角点
# 阈值
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
#棋盘格模板规格
w = 9
h = 6
# 世界坐标系中的棋盘格点,例如(0,0,0), (1,0,0), (2,0,0) ....,(8,5,0),去掉Z坐标,记为二维矩阵
objp = np.zeros((w*h,3), np.float32)
objp[:,:2] = np.mgrid[0:w,0:h].T.reshape(-1,2)
# 储存棋盘格角点的世界坐标和图像坐标对
objpoints = [] # 在世界坐标系中的三维点
imgpoints = [] # 在图像平面的二维点

images = glob.glob('calib/*.png')
for fname in images:
 img = cv2.imread(fname)
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 # 找到棋盘格角点
 ret, corners = cv2.findChessboardCorners(gray, (w,h),None)
 # 如果找到足够点对,将其存储起来
 if ret == True:
  cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
  objpoints.append(objp)
  imgpoints.append(corners)
  # 将角点在图像上显示
  cv2.drawChessboardCorners(img, (w,h), corners, ret)
  cv2.imshow('findCorners',img)
  cv2.waitKey(1)
cv2.destroyAllWindows()

# 标定
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)

# 去畸变
img2 = cv2.imread('calib/00169.png')
h, w = img2.shape[:2]
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),0,(w,h)) # 自由比例参数
dst = cv2.undistort(img2, mtx, dist, None, newcameramtx)
# 根据前面ROI区域裁剪图片
#x,y,w,h = roi
#dst = dst[y:y+h, x:x+w]
cv2.imwrite('calibresult.png',dst)

# 反投影误差
total_error = 0
for i in xrange(len(objpoints)):
 imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
 error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
 total_error += error
print "total error: ", total_error/len(objpoints)

相關推薦:

#OpenCVcv::Mat中的資料寫入txt檔案中

OpenCV cv.Mat與.txt檔案資料的讀寫操作


以上是Python使用OpenCV進行標定的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python vs. C:了解關鍵差異Python vs. C:了解關鍵差異Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python vs.C:您的項目選擇哪種語言?Python vs.C:您的項目選擇哪種語言?Apr 21, 2025 am 12:17 AM

選擇Python還是C 取決於項目需求:1)如果需要快速開發、數據處理和原型設計,選擇Python;2)如果需要高性能、低延遲和接近硬件的控制,選擇C 。

達到python目標:每天2小時的力量達到python目標:每天2小時的力量Apr 20, 2025 am 12:21 AM

通過每天投入2小時的Python學習,可以有效提升編程技能。 1.學習新知識:閱讀文檔或觀看教程。 2.實踐:編寫代碼和完成練習。 3.複習:鞏固所學內容。 4.項目實踐:應用所學於實際項目中。這樣的結構化學習計劃能幫助你係統掌握Python並實現職業目標。

最大化2小時:有效的Python學習策略最大化2小時:有效的Python學習策略Apr 20, 2025 am 12:20 AM

在兩小時內高效學習Python的方法包括:1.回顧基礎知識,確保熟悉Python的安裝和基本語法;2.理解Python的核心概念,如變量、列表、函數等;3.通過使用示例掌握基本和高級用法;4.學習常見錯誤與調試技巧;5.應用性能優化與最佳實踐,如使用列表推導式和遵循PEP8風格指南。

在Python和C之間進行選擇:適合您的語言在Python和C之間進行選擇:適合您的語言Apr 20, 2025 am 12:20 AM

Python適合初學者和數據科學,C 適用於系統編程和遊戲開發。 1.Python簡潔易用,適用於數據科學和Web開發。 2.C 提供高性能和控制力,適用於遊戲開發和系統編程。選擇應基於項目需求和個人興趣。

Python與C:編程語言的比較分析Python與C:編程語言的比較分析Apr 20, 2025 am 12:14 AM

Python更適合數據科學和快速開發,C 更適合高性能和系統編程。 1.Python語法簡潔,易於學習,適用於數據處理和科學計算。 2.C 語法複雜,但性能優越,常用於遊戲開發和系統編程。

每天2小時:Python學習的潛力每天2小時:Python學習的潛力Apr 20, 2025 am 12:14 AM

每天投入兩小時學習Python是可行的。 1.學習新知識:用一小時學習新概念,如列表和字典。 2.實踐和練習:用一小時進行編程練習,如編寫小程序。通過合理規劃和堅持不懈,你可以在短時間內掌握Python的核心概念。

Python與C:學習曲線和易用性Python與C:學習曲線和易用性Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

MantisBT

MantisBT

Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),