這篇文章主要介紹了python數位影像處理之高階形態學處理,現在分享給大家,也給大家做個參考。一起過來看看吧
形態學處理,除了最基本的膨脹、腐蝕、開/閉運算、黑/白帽處理外,還有一些更高級的運用,如凸包,連通區域標記,刪除小塊區域等。
1、凸包
凸包是指一個凸多邊形,這個凸多邊形將圖片中所有的白色像素點都包含在內。
函數為:
skimage.morphology.convex_hull_image(image)
輸入為二值影像,輸出一個邏輯二值影像。在凸包內的點為True, 否則為False
例:
#import matplotlib.pyplot as plt from skimage import data,color,morphology #生成二值测试图像 img=color.rgb2gray(data.horse()) img=(img<0.5)*1 chull = morphology.convex_hull_image(img) #绘制轮廓 fig, axes = plt.subplots(1,2,figsize=(8,8)) ax0, ax1= axes.ravel() ax0.imshow(img,plt.cm.gray) ax0.set_title('original image') ax1.imshow(chull,plt.cm.gray) ax1.set_title('convex_hull image')
skimage.morphology.convex_hull_object(image,neighbors=8 )
輸入參數image是二值影像,neighbors表示是採用4連通還是8連通,預設為8連通。 範例:import matplotlib.pyplot as plt from skimage import data,color,morphology,feature #生成二值测试图像 img=color.rgb2gray(data.coins()) #检测canny边缘,得到二值图片 edgs=feature.canny(img, sigma=3, low_threshold=10, high_threshold=50) chull = morphology.convex_hull_object(edgs) #绘制轮廓 fig, axes = plt.subplots(1,2,figsize=(8,8)) ax0, ax1= axes.ravel() ax0.imshow(edgs,plt.cm.gray) ax0.set_title('many objects') ax1.imshow(chull,plt.cm.gray) ax1.set_title('convex_hull image') plt.show()
#2、連通區域標記
在二值影像中,如果兩個像素點相鄰且值相同(同為0或同為1),那麼就認為這兩個像素點在一個相互連通的區域內。而同一個連通區域的所有像素點,都用同一個數值來進行標記,這個過程就叫連通區域標記。在判斷兩個像素是否相鄰時,我們通常會採用4連通或8連通判斷。在影像中,最小的單位是像素,每個像素周圍有8個鄰接像素,常見的鄰接關係有2種:4鄰接與8鄰接。 4鄰接一共4個點,即上下左右,如下左圖所示。 8鄰接的點一共有8個,包括了對角線位置的點,如下右圖所示。skimage.measure.label(image,connectivity=None)參數中的image表示需要處理的二值影像,connectivity表示連接的模式,1代表4鄰接,2代表8鄰接。 輸出一個標記數組(labels), 從0開始標記。
import numpy as np import scipy.ndimage as ndi from skimage import measure,color import matplotlib.pyplot as plt #编写一个函数来生成原始二值图像 def microstructure(l=256): n = 5 x, y = np.ogrid[0:l, 0:l] #生成网络 mask = np.zeros((l, l)) generator = np.random.RandomState(1) #随机数种子 points = l * generator.rand(2, n**2) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n)) #高斯滤波 return mask > mask.mean() data = microstructure(l=128)*1 #生成测试图片 labels=measure.label(data,connectivity=2) #8连通区域标记 dst=color.label2rgb(labels) #根据不同的标记显示不同的颜色 print('regions number:',labels.max()+1) #显示连通区域块数(从0开始标记) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4)) ax1.imshow(data, plt.cm.gray, interpolation='nearest') ax1.axis('off') ax2.imshow(dst,interpolation='nearest') ax2.axis('off') fig.tight_layout() plt.show()在程式碼中,有些地方乘以1,則可以將bool陣列快速地轉換為int陣列。 結果如圖:有10個連通的區域,標記為0-9
skimage.measure.regionprops(label_image)傳回所有連通區塊的屬性列表,常用的屬性列表如下表:
類型 | 描述 | |
int | 區域內像素點總數 | |
tuple | 邊界外接方塊(min_row, min_col, max_row, max_col) | |
array | #質心座標 | |
#int | 凸包內像素點總數 | |
#ndarray | 與邊界外接方塊同大小的凸包 | |
ndarray | 區域內像素點座標 | |
float | 離心率 | |
float | 和區域面積相同的圓的直徑 | |
int | 區域歐拉數 | |
float | 區域面積與邊界外接框面積的比率 | |
int | 區域與外接方塊之間填滿的像素點總數 | |
float | 區域週長 | |
區域標記 |
以上是python數位影像處理之高階形態學處理的詳細內容。更多資訊請關注PHP中文網其他相關文章!

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SecLists
SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

Atom編輯器mac版下載
最受歡迎的的開源編輯器

DVWA
Damn Vulnerable Web App (DVWA) 是一個PHP/MySQL的Web應用程序,非常容易受到攻擊。它的主要目標是成為安全專業人員在合法環境中測試自己的技能和工具的輔助工具,幫助Web開發人員更好地理解保護網路應用程式的過程,並幫助教師/學生在課堂環境中教授/學習Web應用程式安全性。 DVWA的目標是透過簡單直接的介面練習一些最常見的Web漏洞,難度各不相同。請注意,該軟體中

mPDF
mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

SAP NetWeaver Server Adapter for Eclipse
將Eclipse與SAP NetWeaver應用伺服器整合。