以下為大家分享一篇對numpy中軸與維度的理解,具有很好的參考價值,希望對大家有幫助。一起來看看吧
NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. InsionPy. axes. The number of axes is rank.
For example, the coordinates of a point in 3D space [1, 2, 1] is an array of rank 1, because it has one axis. That axis has ahas length of 3. In the example pictured below, the array has rank 2 (it is 2-dimensional). The first dimension (axis) has a length of 2, the second dimension has a length of 3.
[[ 1., 0., 0.], [ 0., 1., 2.]]
ndarray.ndim
#陣列軸的數,在python
的世界中,軸的數量被稱為秩
>> X = np.reshape(np.arange(24), (2, 3, 4)) # 也即 2 行 3 列的 4 个平面(plane) >> X array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]])
shape函數是numpy.core.fromnumeric中的函數,它的功能是讀取矩陣的長度,例如shape[0]就是讀取矩陣第一個維度的長度。 shape(x)
(2,3,4)shape(x )[0]
2
#或x.shape[0]
2
再來分別看每一個平面的構成: #>> X[:, :, 0] array([[ 0, 4, 8], [12, 16, 20]]) >> X[:, :, 1] array([[ 1, 5, 9], [13, 17, 21]]) >> X[:, :, 2] array([[ 2, 6, 10], [14, 18, 22]]) >> X[:, :, 3] array([[ 3, 7, 11], [15, 19, 23]])##也即是對np .arange(24)(0, 1, 2, 3, ..., 23) 進行重新的排列時,在多維數組的多個軸的方向上,先分配最後一個軸(對於二維數組,即先分配行的方向,對於三維數組即先分配平面的方向)
reshpae,是數組物件中的方法,用於改變數組的形狀。
二維陣列
#
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a d=a.reshape((2,4)) print d
##
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a f=a.reshape((2, 2, 2)) print f三維數組
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a print a.dtype e=a.reshape((2,2)) print e
#形狀變化的原則是數組元素不能改變,例如這樣寫就是錯誤的,因為數組元素發生了變化。
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a e=a.reshape((2, 4)) print e a[1]=100 print a print e
注意:透過reshape產生的新數組和原始數組公用一個內存,也就是說,假如更改一個數組的元素,另一個數組也會改變。
a=np.arange(0, 60, 10) >>>a array([0,10,20,30,40,50]) >>>a.reshape(-1,1) array([[0], [10], [20], [30], [40], [50]])
#Python中reshape函數參數-1的意思
>>> a = np.array([[1,2,3], [4,5,6]]) >>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2 array([[1, 2], [3, 4], [5, 6]])如果寫成a.reshape(1,1)就會報錯
ValueError:cannot reshape array of size 6 into shape (1,1)
# 下面是两张2*3大小的照片(不知道有几张照片用-1代替),如何把所有二维照片给摊平成一维 >>> image = np.array([[[1,2,3], [4,5,6]], [[1,1,1], [1,1,1]]]) >>> image.shape (2, 2, 3) >>> image.reshape((-1, 6)) array([[1, 2, 3, 4, 5, 6], [1, 1, 1, 1, 1, 1]])
-1表示我懶得計算該填什麼數字,由python通過a和其他的值3推測出來。
rrreee
相關推薦:
#對numpy中array和asarray的區別
##### #############################以上是numpy中的軸與維度的詳細內容。更多資訊請關注PHP中文網其他相關文章!