搜尋
首頁後端開發Python教學python之裝飾器的理解

python之裝飾器的理解

Apr 16, 2018 am 11:53 AM
python裝飾器

這篇文章介紹的內容是關於python之裝飾器的理解,有著一定的參考價值,現在分享給大家,有需要的朋友可以參考一下

1、必備

核心:函數即「變數」
定義:本質上是函數,是為了在其他函數中加入附加功能
原則:
      1、不修改原函數的原始程式碼

#      2、不修改原函數的呼叫方式 

高階函數巢狀函數=>裝飾器

#### 第一波 ####
def foo():
    print 'foo'
 
foo     #表示是函数
foo()   #表示执行foo函数
 
#### 第二波 ####
def foo():
    print 'foo'
 
foo = lambda x: x + 1
 
foo()   # 执行下面的lambda表达式,而不再是原来的foo函数,因为函数 foo 被重新定义了

2、需求來了

新創公司有N個業務部門,1個基礎平台部門,基礎平台負責提供底層的功能,如:資料庫操作、redis呼叫、監控API等功能。業務部門使用基礎功能時,只需呼叫基礎平台提供的功能即可。如下:

############### 基础平台提供的功能如下 ###############
 
def f1():
    print 'f1'
 
def f2():
    print 'f2'
 
def f3():
    print 'f3'
 
def f4():
    print 'f4'
 
############### 业务部门A 调用基础平台提供的功能 ###############
 
f1()
f2()
f3()
f4()
 
############### 业务部门B 调用基础平台提供的功能 ###############
 
f1()
f2()
f3()
f4()


目前公司有條不紊的進行著,但是,以前基礎平台的開發人員在寫程式碼時候沒有註意驗證相關的問題,即:基礎平台的提供的功能可以被任何人使用。現在需要對基礎平台的所有功能進行重構,為平台提供的所有功能新增驗證機制,即:執行功能前,先進行驗證。

老闆把工作交給Low B,他是這麼做的:


1


#

跟每個業務部門交涉,每個業務部門自己寫程式碼,呼叫基礎平台的功能前先驗證。誒,這樣一來基礎平台就不需要做任何修改了。


當日Low B 被開除了...

老闆把工作交給Low BB,他是這麼做的:


1


只對基礎平台的程式碼重構,讓N業務部門不需要做任何修改

##
############### 基础平台提供的功能如下 ############### def f1():    # 验证1
    # 验证2
    # 验证3
    print 'f1'def f2():    # 验证1
    # 验证2
    # 验证3
    print 'f2'def f3():    # 验证1
    # 验证2
    # 验证3
    print 'f3'def f4():    # 验证1
    # 验证2
    # 验证3
    print 'f4'############### 业务部门不变 ############### ### 业务部门A 调用基础平台提供的功能### f1()
f2()
f3()
f4()### 业务部门B 调用基础平台提供的功能 ### f1()
f2()
f3()
f4()

过了一周 Low BB 被开除了...

老大把工作交给 Low BBB,他是这么做的:

1


只对基础平台的代码进行重构,其他业务部门无需做任何修改

############### 基础平台提供的功能如下 ############### def check_login():    # 验证1
    # 验证2
    # 验证3
    passdef f1():
    
    check_login()    print 'f1'def f2():
    
    check_login()    print 'f2'def f3():
    
    check_login()    print 'f3'def f4():
    
    check_login()    
    print 'f4'

老大看了下Low BBB 的实现,嘴角漏出了一丝的欣慰的笑,语重心长的跟Low BBB聊了个天:

老大说:

写代码要遵循开发封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

  • 封闭:已实现的功能代码块

  • 开放:对扩展开发

如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码,老板就给了Low BBB一个实现方案:

def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        return func()
    return inner
 
@w1
def f1():
    print 'f1'
@w1
def f2():
    print 'f2'
@w1
def f3():
    print 'f3'
@w1
def f4():
    print 'f4'

对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其他业务部门无需做任何操作。

Low BBB心惊胆战的问了下,这段代码的内部执行原理是什么呢?

老大正要生气,突然Low BBB的手机掉到地上,恰恰屏保就是Low BBB的女友照片,老大一看一紧一抖,喜笑颜开,交定了Low BBB这个朋友。详细的开始讲解了:

单独以f1为例:

def w1(func):
    def inner():
        # 验证1
        # 验证2
        # 验证3
        return func()
    return inner
 
@w1
def f1():
    print 'f1'

当写完这段代码后(函数未被执行、未被执行、未被执行),python解释器就会从上到下解释代码,步骤如下:

  1. def w1(func):  ==>将w1函数加载到内存

  2. @w1

没错,从表面上看解释器仅仅会解释这两句代码,因为函数在没有被调用之前其内部代码不会被执行。

从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章,@函数名 是python的一种语法糖。

如上例@w1内部会执行一下操作:

  • 执行w1函数,并将 @w1 下面的 函数 作为w1函数的参数,即:@w1 等价于 w1(f1)
    所以,内部就会去执行:
        def inner:
            #验证
            return f1()   # func是参数,此时 func 等于 f1
        return inner     # 返回的 inner,inner代表的是函数,非执行函数
    其实就是将原来的 f1 函数塞进另外一个函数中

  • 将执行完的 w1 函数返回值赋值给@w1下面的函数的函数名
    w1函数的返回值是:
       def inner:
            #验证
            return 原来f1()  # 此处的 f1 表示原来的f1函数
    然后,将此返回值再重新赋值给 f1,即:
    新f1 = def inner:
                #验证
                return 原来f1() 
    所以,以后业务部门想要执行 f1 函数时,就会执行 新f1 函数,在 新f1 函数内部先执行验证,再执行原来的f1函数,然后将 原来f1 函数的返回值 返回给了业务调用者。
    如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函数返回值 返回给业务调用着

Low BBB 你明白了吗?要是没明白的话,我晚上去你家帮你解决吧!!!

先把上述流程看懂,之后还会继续更新...

3、问答时间

问题:被装饰的函数如果有参数呢?

def w1(func):    def inner(arg):        # 验证1
        # 验证2
        # 验证3
        return func(arg)    return inner

@w1def f1(arg):    print 'f1'


def w1(func):    def inner(arg1,arg2):        # 验证1
        # 验证2
        # 验证3
        return func(arg1,arg2)    return inner

@w1def f1(arg1,arg2):    print 'f1'


def w1(func):    def inner(arg1,arg2,arg3):        # 验证1
        # 验证2
        # 验证3
        return func(arg1,arg2,arg3)    return inner

@w1def f1(arg1,arg2,arg3):    print 'f1'

问题:可以装饰具有处理n个参数的函数的装饰器?

def w1(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
 
@w1
def f1(arg1,arg2,arg3):
    print 'f1'

问题:一个函数可以被多个装饰器装饰吗?

def w1(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
 
def w2(func):
    def inner(*args,**kwargs):
        # 验证1
        # 验证2
        # 验证3
        return func(*args,**kwargs)
    return inner
 
 
@w1
@w2
def f1(arg1,arg2,arg3):
    print 'f1'

问题:还有什么更吊的装饰器吗?

#!/usr/bin/env python
#coding:utf-8
  
def Before(request,kargs):
    print 'before'
      
def After(request,kargs):
    print 'after'
  
  
def Filter(before_func,after_func):
    def outer(main_func):
        def wrapper(request,kargs):
              
            before_result = before_func(request,kargs)
            if(before_result != None):
                return before_result;
              
            main_result = main_func(request,kargs)
            if(main_result != None):
                return main_result;
              
            after_result = after_func(request,kargs)
            if(after_result != None):
                return after_result;
              
        return wrapper
    return outer
      
@Filter(Before, After)
def Index(request,kargs):
    print 'index'

4、functools.wraps

上述的装饰器虽然已经完成了其应有的功能,即:装饰器内的函数代指了原函数,注意其只是代指而非相等,原函数的元信息没有被赋值到装饰器函数内部。例如:函数的注释信息

def outer(func):    def inner(*args, **kwargs):        print(inner.__doc__)  # None
        return func()    return inner

@outerdef function():    """
    asdfasd
    :return:    """
    print('func')


如果使用@functools.wraps装饰装饰器内的函数,那么就会代指元信息和函数。


def outer(func):
    @functools.wraps(func)    def inner(*args, **kwargs):        print(inner.__doc__)  # None
        return func()    return inner

@outerdef function():    """
    asdfasd
    :return:    """
    print('func')

以上是python之裝飾器的理解的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python的科學計算中如何使用陣列?Python的科學計算中如何使用陣列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何處理同一系統上的不同Python版本?您如何處理同一系統上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通過使用pyenv、venv和Anaconda來管理不同的Python版本。 1)使用pyenv管理多個Python版本:安裝pyenv,設置全局和本地版本。 2)使用venv創建虛擬環境以隔離項目依賴。 3)使用Anaconda管理數據科學項目中的Python版本。 4)保留系統Python用於系統級任務。通過這些工具和策略,你可以有效地管理不同版本的Python,確保項目順利運行。

與標準Python陣列相比,使用Numpy數組的一些優點是什麼?與標準Python陣列相比,使用Numpy數組的一些優點是什麼?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基於基於duetoc的iMplation,2)2)他們的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函數函數函數函數構成和穩定性構成和穩定性的操作,製造

陣列的同質性質如何影響性能?陣列的同質性質如何影響性能?Apr 25, 2025 am 12:13 AM

數組的同質性對性能的影響是雙重的:1)同質性允許編譯器優化內存訪問,提高性能;2)但限制了類型多樣性,可能導致效率低下。總之,選擇合適的數據結構至關重要。

編寫可執行python腳本的最佳實踐是什麼?編寫可執行python腳本的最佳實踐是什麼?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy數組與使用數組模塊創建的數組有何不同?Numpy數組與使用數組模塊創建的數組有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,內存效率段

Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Numpy數組的使用與使用Python中的數組模塊陣列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模塊與Python中的數組有何關係?CTYPES模塊與Python中的數組有何關係?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

SecLists

SecLists

SecLists是最終安全測試人員的伙伴。它是一個包含各種類型清單的集合,這些清單在安全評估過程中經常使用,而且都在一個地方。 SecLists透過方便地提供安全測試人員可能需要的所有列表,幫助提高安全測試的效率和生產力。清單類型包括使用者名稱、密碼、URL、模糊測試有效載荷、敏感資料模式、Web shell等等。測試人員只需將此儲存庫拉到新的測試機上,他就可以存取所需的每種類型的清單。

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境