這篇文章主要為大家詳細介紹了python實現百度語音辨識api,具有一定的參考價值,有需要的朋友可以參考一下
本文實例為大家分享了ython實現百度語音辨識的具體程式碼,供大家參考,具體內容如下
詳細百度語音辨識api文檔
先下載python用SDK,可以用python setup.py install安裝
## 引入Speech SDK from aip import AipSpeech # 定义常量 APP_ID = '你的 App ID' API_KEY = '你的 API Key' SECRET_KEY = '你的 Secret Key' # 初始化AipSpeech对象 aipSpeech = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
在上面程式碼中,常數APP_ID在百度雲控制台中創建,常數API_KEY與SECRET_KEY是在創建完畢應用後,系統分配給用戶的,均為字符串,用於標識用戶,為訪問做簽名驗證,可在AI服務控制台中的應用程式清單中查看。
開始識別
注意:
#要求說明:
1 . 原始語音的錄音格式目前只支援評測8k/16k 取樣率16bit 位元深的單聲道語音
2. 壓縮格式支援:pcm(不壓縮)、wav、amr
3. 系統支援語言種類:中文(zh)、粵語(ct)、英文(en)。
# 读取文件 def get_file_content(filePath): with open(filePath, 'rb') as fp: return fp.read() # 识别本地文件 aipSpeech.asr(get_file_content('audio.pcm'), 'pcm', 16000, { 'lan': 'zh', }) # 从URL获取文件识别 aipSpeech.asr('', 'pcm', 16000, { 'url': 'http://121.40.195.233/res/16k_test.pcm', 'callback': 'http://xxx.com/receive', })
傳回結果:
// 成功返回 { "err_no": 0, "err_msg": "success.", "corpus_no": "15984125203285346378", "sn": "481D633F-73BA-726F-49EF-8659ACCC2F3D", "result": ["北京天气"] } // 失败返回 { "err_no": 2000, "err_msg": "data empty.", "sn": null }
相關推薦:
以上是python實現百度語音辨識api的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和C 在内存管理和控制方面的差异显著。1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

選擇Python還是C 取決於項目需求:1)Python適合快速開發、數據科學和腳本編寫,因其簡潔語法和豐富庫;2)C 適用於需要高性能和底層控制的場景,如係統編程和遊戲開發,因其編譯型和手動內存管理。

Python在數據科學和機器學習中的應用廣泛,主要依賴於其簡潔性和強大的庫生態系統。 1)Pandas用於數據處理和分析,2)Numpy提供高效的數值計算,3)Scikit-learn用於機器學習模型構建和優化,這些庫讓Python成為數據科學和機器學習的理想工具。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

SublimeText3漢化版
中文版,非常好用

Dreamweaver Mac版
視覺化網頁開發工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

MinGW - Minimalist GNU for Windows
這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。