搜尋
首頁後端開發Python教學Python中怎樣把矩陣轉換為列表

這次帶給大家Python中怎樣把矩陣轉換為列表,Python中把矩陣轉換為列表的注意事項有哪些,下面就是實戰案例,一起來看一下。

這篇文章主要介紹Python的numpy庫中的一些函數,做備份,以便找到。

(1)將矩陣轉換為列表的函數:numpy.matrix.tolist()

傳回list列表

Examples

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],
  [ 4, 5, 6, 7],
  [ 8, 9, 10, 11]])
>>> x.tolist()
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]

(2)將陣列轉換為清單的函數:numpy.ndarray.tolist()

Notes:(陣列能夠被重新建構)

The array may be recreated, a=np.array(a.tolist()).

Examples

>>>

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

(3)numpy.mean()計算矩陣或陣列的平均值:

Examples

>>>

>>> a = np.array([[1, 2], [3, 4]]) #对所有元素求均值
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0) #对每一列求均值
array([ 2., 3.])
>>> np.mean(a, axis=1) #对每一行求均值
array([ 1.5, 3.5])

(4)numpy.std()計算矩陣或陣列的標準差:

Examples

>>>

>>> a = np.array([[1, 2], [3, 4]]) #对所有元素求标准差 
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0) #对每一列求标准差
array([ 1., 1.])
>>> np.std(a, axis=1) #对每一行求标准差
array([ 0.5, 0.5])

(5)numpy.newaxis為數組增加一個維度:

Examples:

>>> a=np.array([[1,2,3],[4,5,6],[7,8,9]]) #先输入3行2列的数组a
>>> b=a[:,:2] 
>>> b.shape #当数组的行与列都大于1时,不需增加维度
(3, 2)
>>> c=a[:,2] 
>>> c.shape #可以看到,当数组只有一列时,缺少列的维度
(3,)
>>> c
array([3, 6, 9])
>>> d=a[:,2,np.newaxis] #np.newaxis实现增加列的维度
>>> d
array([[3],
  [6],
  [9]])
>>> d.shape  #d的维度成了3行1列(3,1)
(3, 1)
>>> e=a[:,2,None] #None与np.newaxis实现相同的功能
>>> e
array([[3],
  [6],
  [9]])
>>> e.shape
(3, 1)

(6)numpy.random.shuffle(index): 打亂資料集(陣列)的順序:

#Examples:

>>> index = [i for i in range(10)] 
>>> index 
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
>>> np.random.shuffle(index) 
>>> index 
[7, 9, 3, 0, 4, 1, 5, 2, 8, 6]

(7)計算二維陣列某一行或某一列的最大值最小值:

>>> import numpy as np 
>>> a = np.arange(15).reshape(5,3) #构造一个5行3列的二维数组 
>>> a 
array([[ 0, 1, 2], 
  [ 3, 4, 5], 
  [ 6, 7, 8], 
  [ 9, 10, 11], 
  [12, 13, 14]]) 
>>> b = a[:,0].min() ##取第0列的最小值,其他列同理 
>>> b 
0 
>>> c = a[0,:].max() ##取第0行的最大值,其他行同理 
>>> c 
2

(8)在陣列中新增列:np.hstack()

n = np.array(np.random.randn(4,2)) 
n 
Out[153]: 
array([[ 0.17234 , -0.01480043], 
  [-0.33356669, -1.33565616], 
  [-1.11680009, 0.64230761], 
  [-0.51233174, -0.10359941]]) 
l = np.array([1,2,3,4]) 
l 
Out[155]: array([1, 2, 3, 4]) 
l.shape 
Out[156]: (4,)

可以看到,n是二維的,l是一維的,如果直接呼叫np.hstack()會出錯:維度不同。

n = np.hstack((n,l)) 
ValueError: all the input arrays must have same number of dimensions

解決方法是將l變成二維的,可以用(5)中的方法:

n = np.hstack((n,l[:,np.newaxis])) ##注意:在使用np.hstack()时必须用()把变量括起来,因为它只接受一个变量 
n 
Out[161]: 
array([[ 0.17234 , -0.01480043, 1.  ], 
  [-0.33356669, -1.33565616, 2.  ], 
  [-1.11680009, 0.64230761, 3.  ], 
  [-0.51233174, -0.10359941, 4.  ]])

下面講一下如何按列往一個空列表新增值:

n = np.array([[1,2,3,4,5,6],[11,22,33,44,55,66],[111,222,333,444,555,666]]) ##产生一个三行六列容易区分的数组 
n 
Out[166]: 
array([[ 1, 2, 3, 4, 5, 6], 
  [ 11, 22, 33, 44, 55, 66], 
  [111, 222, 333, 444, 555, 666]]) 
 
sample = [[]for i in range(3)] ##产生三行一列的空列表 
Out[172]: [[], [], []] 
for i in range(0,6,2): ##每间隔一列便添加到sample中 
 sample = np.hstack((sample,n[:,i,np.newaxis]))  
sample 
Out[170]: 
array([[ 1., 3., 5.], 
  [ 11., 33., 55.], 
  [ 111., 333., 555.]])

持續更新中…

相信看了本文案例你已經掌握了方法,更多精彩請關注php中文網其它相關文章!

推薦閱讀:

在python中列表,陣列,矩陣互相轉換的方法

Python怎麼求得最大公約數

以上是Python中怎樣把矩陣轉換為列表的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
Python中的合併列表:選擇正確的方法Python中的合併列表:選擇正確的方法May 14, 2025 am 12:11 AM

Tomergelistsinpython,YouCanusethe操作員,estextMethod,ListComprehension,Oritertools

如何在Python 3中加入兩個列表?如何在Python 3中加入兩個列表?May 14, 2025 am 12:09 AM

在Python3中,可以通過多種方法連接兩個列表:1)使用 運算符,適用於小列表,但對大列表效率低;2)使用extend方法,適用於大列表,內存效率高,但會修改原列表;3)使用*運算符,適用於合併多個列表,不修改原列表;4)使用itertools.chain,適用於大數據集,內存效率高。

Python串聯列表字符串Python串聯列表字符串May 14, 2025 am 12:08 AM

使用join()方法是Python中從列表連接字符串最有效的方法。 1)使用join()方法高效且易讀。 2)循環使用 運算符對大列表效率低。 3)列表推導式與join()結合適用於需要轉換的場景。 4)reduce()方法適用於其他類型歸約,但對字符串連接效率低。完整句子結束。

Python執行,那是什麼?Python執行,那是什麼?May 14, 2025 am 12:06 AM

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python:關鍵功能是什麼Python:關鍵功能是什麼May 14, 2025 am 12:02 AM

Python的關鍵特性包括:1.語法簡潔易懂,適合初學者;2.動態類型系統,提高開發速度;3.豐富的標準庫,支持多種任務;4.強大的社區和生態系統,提供廣泛支持;5.解釋性,適合腳本和快速原型開發;6.多範式支持,適用於各種編程風格。

Python:編譯器還是解釋器?Python:編譯器還是解釋器?May 13, 2025 am 12:10 AM

Python是解釋型語言,但也包含編譯過程。 1)Python代碼先編譯成字節碼。 2)字節碼由Python虛擬機解釋執行。 3)這種混合機制使Python既靈活又高效,但執行速度不如完全編譯型語言。

python用於循環與循環時:何時使用哪個?python用於循環與循環時:何時使用哪個?May 13, 2025 am 12:07 AM

UseeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.forloopsareIdealForkNownsences,而WhileLeleLeleLeleLeleLoopSituationSituationsItuationsItuationSuationSituationswithUndEtermentersitations。

Python循環:最常見的錯誤Python循環:最常見的錯誤May 13, 2025 am 12:07 AM

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐個偏置,零indexingissues,andnestedloopineflinefficiencies

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

SublimeText3 英文版

SublimeText3 英文版

推薦:為Win版本,支援程式碼提示!

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

mPDF

mPDF

mPDF是一個PHP庫,可以從UTF-8編碼的HTML產生PDF檔案。原作者Ian Back編寫mPDF以從他的網站上「即時」輸出PDF文件,並處理不同的語言。與原始腳本如HTML2FPDF相比,它的速度較慢,並且在使用Unicode字體時產生的檔案較大,但支援CSS樣式等,並進行了大量增強。支援幾乎所有語言,包括RTL(阿拉伯語和希伯來語)和CJK(中日韓)。支援嵌套的區塊級元素(如P、DIV),

Dreamweaver Mac版

Dreamweaver Mac版

視覺化網頁開發工具