這次帶給大家JS實作貝葉斯分類器,JS實作貝葉斯分類器的注意事項有哪些,下面就是實戰案例,一起來看一下。
先放程式碼
function NB(data) { this.fc = {}; //记录特征的数量 feature conut 例如 {a:{yes:5,no:2},b:{yes:1,no:6}} this.cc = {}; //记录分类的数量 category conut 例如 {yes:6,no:8} } NB.prototype = { infc(w, cls) { //插入新特征值 if (!this.fc[w]) this.fc[w] = {}; if (!this.fc[w][cls]) this.fc[w][cls] = 0; this.fc[w][cls] += 1; }, incc(cls) { //插入新分类 if (!this.cc[cls]) this.cc[cls] = 0; this.cc[cls] += 1; }, allco() { //计算分类总数 all count var t = 0; for (var k in this.cc) t += this.cc[k]; return t; }, fprob(w, ct) { //特征标识概率 if (Object.keys(this.fc).indexOf(w) >= 0) { if (Object.keys(this.fc[w]).indexOf(ct) < 0) { this.fc[w][ct] = 0 } var c = parseFloat(this.fc[w][ct]); return c / this.cc[ct]; } else { return 0.0; } }, cprob(c) { //分类概率 return parseFloat(this.cc[c] / this.allco()); }, train(data, cls) { //参数:学习的Array,标识类型(Yes|No) for (var w of data) this.infc(String(w), cls); this.incc(cls); }, test(data) { var ccp = {}; //P(类别) var fccp = {}; //P(特征|类别) for (var k in this.cc) ccp[k] = this.cprob(k); for (var i of data) { i = String(i); if (!i) continue; if (Object.keys(this.fc).indexOf(i)) { for (var k in ccp) { if (!fccp[k]) fccp[k] = 1; fccp[k] *= this.fprob(i, k); //P(特征1|类别1)*P(特征2|类别1)*P(特征3|类别1)... } } } var tmpk = ""; for (var k in ccp) { ccp[k] = ccp[k] * fccp[k]; if (!tmpk) tmpk = k; if (ccp[k] > ccp[tmpk]) tmpk = k; } return tmpk; } };
預測功能就要用到樸素貝葉斯演算法
首先來看,貝葉斯公式:
可能你看不懂公式或看懂公式不知道公式怎麼用
那我來簡單的翻譯一下:
P( Category |Feature) = P ( Feature | Category ) * P( Category)/ P(Feature)
其實也是就是:
P(類別|特徵)=P(特徵|類別)*P(類別)/p(特徵)
#所以我們只要計算下列資料:
# P(特徵|類別)
P(類別)
p(特徵)
假設兩個類別,分別是類別1,與類別2
那麼類別總次數就是兩個類別出現次數總和
加上可能我們輸入的特徵有多個假設就3個把那麼也簡單:
P((特徵1、特徵2、特徵3)|類別1) = P(特徵1|類別1)*P(特徵2|類別1)*P(特徵3|類別1)
P(類別1)=類別1的次數/(類別總數)
P(特徵1、特徵2、特徵3)=P(特徵1)*P(特徵2)*P(特徵3)
因為根據公式我們知道:
#P(類別1|特徵)=P(特徵|類別1)*P(類別1)/p(特徵)
P(類別2|特徵)=P(特徵|類別2)*P(類別2)/p (特徵)
剛好p(特徵)為分母所以如果比較P(類別1|特徵)與P(類別2|特徵)的機率
只要比較P(特徵|類別1 )*P(類別1)與P(特徵|類別2)*P(類別2)的大小就行了
#相信看了本文案例你已經掌握了方法,更多精彩請關注php中文網其它相關文章!
相關閱讀:
#以上是JS實作貝葉斯分類器的詳細內容。更多資訊請關注PHP中文網其他相關文章!